Recently, a large family of at least 14 discotic liquid crystals was discovered that are exceptions to the conventional paradigm that discotic mesogens tend to feature long, flexible tails on their periphery. To understand why these materials are liquid crystals, as well as the structural determinants of discotic phase behavior, we studied a group of closely related small tail-free disk-like molecules, including both mesogenic and non-mesogenic compounds differing only in the position of a single fluorine substituent. The rigidity and structural simplicity of these molecules make them well suited to for study by large, fully all-atom simulations. Using a combination of static and dynamic metrics, we were able to identify several key features of the columnar mesophase and, thereby, conclusively identify a columnar liquid crystalline mesophase present in a subset of our systems. Our simulations feature molecules hopping between columns in the columnar mesophase and distinctive molecular rotations in 60° steps about the columnar axis. The ability to create and characterize columnar mesophases in silico provides a potent tool for untangling the structural determinants of liquid crystalline behavior in these and other tail-free discotic liquid crystals.
more »
« less
This content will become publicly available on November 11, 2025
Minimalist columnar liquid crystals: influence of fluorination on the mesogenic behavior of tetramethoxytriphenylene derivatives
A set of short-tailed discotic liquid crystals are presented which feature a mesophase despite having methoxy units as tails. Their unusual properties are a result of strategic fluorination, with more fluorination leading to broader mesophase ranges.
more »
« less
- Award ID(s):
- 1809536
- PAR ID:
- 10591781
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Materials Advances
- Volume:
- 5
- Issue:
- 22
- ISSN:
- 2633-5409
- Page Range / eLocation ID:
- 9032 to 9040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When multiple reaction steps occur before thermal equilibration, kinetic energy from one reaction step can influence overall product distributions in ways that are not well predicted by transition state theory. An understanding of how the structural features of mechanophores, such as substitutions, affects reactivity, product distribution, and the extent of dynamic effects in the mechanochemical manifolds is necessary for designing chemical reactions and responsive materials. We synthesized two tetrafluorinated [4]-ladderanes with fluorination on different rungs and found that the fluorination pattern influenced the force sensitivity and stereochemical distribution of products in the mechanochemistry of these fluorinated ladderanes. The threshold forces for mechanochemical unzipping of ladderane were decreased by alpha-fluorination and increased by gamma-fluorination; these changes correlated to the different stabilizing or destabilizing effects of fluorination patterns on the first transition state. Using ab initio steered molecular dynamics (AISMD), we compared the product distributions of synthesized and hypothetical ladderanes with different substitution patterns. These calculations suggest that fluorination on the first two bonds of ladderane gives rise to a larger fraction of dynamic trajectories and a larger fraction of E alkene prod-uct through a mechanism resulting from larger momentum because of the greater atomic mass of fluorine. Fluorination on the third and fourth rungs instead gives a larger fraction of E alkene product primarily due to electronic effects. These com-bined experimental and computational studies of the mechanochemical unzipping of fluorinated ladderanes provide an example of how relatively simple substituents can affect the extent of non-statistical dynamics, and thus mechanochemical outcomes.more » « less
-
We report a photochemically induced, hydroxy-directed fluorination that addresses the prevailing challenge of high diastereoselectivity in this burgeoning field. Numerous simple and complex motifs showcase a spectrum of regio- and stereochemical outcomes based on the configuration of the hydroxy group. Notable examples include a long-sought switch in the selectivity of the refractory sclareolide core, an override of benzylic fluorination, and a rare case of 3,3′-difluorination. Furthermore, calculations illuminate a low barrier transition state for fluorination, supporting our notion that alcohols are engaged in coordinated reagent direction. A hydrogen bonding interaction between the innate hydroxy directing group and fluorine is also highlighted for several substrates with 19 F– 1 H HOESY experiments, calculations, and more.more » « less
-
Site-selective fluorination of aliphatic C–H bonds remains synthetically challenging. While directed C–H fluorination represents the most promising approach, the limited work conducted to date has enabled just a few functional groups as the arbiters of direction. Leveraging insights gained from both computations and experimentation, we enabled the use of the ubiquitous amine functional group as a handle for the directed C–H fluorination of Csp 3 –H bonds. By converting primary amines to adamantoyl-based fluoroamides, site-selective C–H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes. Computational studies revealed a unique reaction coordinate for the catalytic process and offer an explanation for the high site selectivity.more » « less
An official website of the United States government
