skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 25, 2025

Title: Predicting and Analyzing Students’ Higher-Order Questions in Collaborative Problem-Solving
Question-asking is a crucial learning and teaching approach. It reveals different levels of students' understanding, application, and potential misconceptions. Previous studies have categorized question types into higher and lower orders, finding positive and significant associations between higher-order questions and students' critical thinking ability and their learning outcomes in different learning contexts. However, the diversity of higher-order questions, especially in collaborative learning environments. has left open the question of how they may be different from other types of dialogue that emerge from students' conversations, To address these questions, our study utilized natural language processing techniques to build a model and investigate the characteristics of students' higher-order questions. We interpreted these questions using Bloom's taxonomy, and our results reveal three types of higher-order questions during collaborative problem-solving. Students often use Why, How and What If' questions to I) understand the reason and thought process behind their partners' actions: 2) explore and analyze the project by pinpointing the problem: and 3) propose and evaluate ideas or alternative solutions. In addition. we found dialogue labeled 'Social'. 'Question - other', 'Directed at Agent', and 'Confusion/Help Seeking' shows similar underlying patterns to higher-order questions, Our findings provide insight into the different scenarios driving students' higher-order questions and inform the design of adaptive systems to deliver personalized feedback based on students' questions.  more » « less
Award ID(s):
2229612 2331379
PAR ID:
10591787
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
APSCE
Date Published:
Journal Name:
International Conference on Computers in Education
ISSN:
3078-4360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In successful collaborative paradigms such as pair programming, students engage in productive dialogue and work to resolve con- flicts as they arise. However, little is known about how elementary students engage in collaborative dialogue for computer science learning. Early findings indicate that these younger students may struggle to manage conflicts that arise during pair programming. To investigate collaborative dialogue that elementary learners use and the conflicts that they encounter, we analyzed videos of twelve pairs of fifth grade students completing pair programming activities. We developed a novel annotation scheme with a focus on collab- orative dialogue and conflicts. We found that student pairs used best-practice dialogue moves such as self-explanation, question generation, uptake, and praise in less than 23% of their dialogue. High-conflict pairs antagonized their partner, whereas this behav- ior was not observed with low-conflict pairs. We also observed more praise (e.g., “We did it!”) and uptake (e.g., “Yeah and. . . ”) in low-conflict pairs than high-conflict pairs. All pairs exhibited some conflicts about the task, but high-conflict pairs also engaged in conflicts about control of the computer and their partner’s con- tributions. The results presented here provide insights into the collaborative process of young learners in CS problem solving, and also hold implications for educators as we move toward building learning environments that support students in this context. 
    more » « less
  2. Question-asking in collaborative dialogue has long been established as key to knowledge construction, both in internal and collaborative problem solving. In this work, we examine probing questions in collaborative dialogues: questions that explicitly elicit responses from the speaker`s interlocutors. Specifically, we focus on modeling the causal relations that lead directly from utterances earlier in the dialogue to the emergence of the probing question. We model these relations using a novel graph-based framework of *deliberation chains*, and realize the problem of constructing such chains as a coreference-style clustering problem. Our framework jointly models probing and causal utterances and the links between them, and we evaluate on two challenging collaborative task datasets: the Weights Task and DeliData. Our results demonstrate the effectiveness of our theoretically-grounded approach compared to both baselines and stronger coreference approaches, and establish a standard of performance in this novel task. 
    more » « less
  3. Collaboration plays an essential role in computer science. While there is growing recognition that learners of all ages can benefit from collaborative learning, little is known about how elementary age children engage in collaborative problem solving in computer science. This paper reports on the analysis of a dataset of elementary students collaborating on a programming project. We found that children tend to make several different types of suggestions. In turn, their partners address those suggestions in different ways such as by implementing them directly in code or by replying through dialogue. We observe that students regularly accept or reject suggestions without explanation or explicit acknowledgement and that it is often unclear whether they understand the substance of the suggestion. These behaviors may inhibit the development of a shared understanding between the partners and limit the value of the collaborative process. These results can inform instructional practice and the development of new adaptive tools that facilitate productive collaborative problem solving in computer science. 
    more » « less
  4. Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning. 
    more » « less
  5. null (Ed.)
    To defend against collaborative cheating in code writing questions, instructors of courses with online, asynchronous exams can use the strategy of question variants. These question variants are manually written questions to be selected at random during exam time to assess the same learning goal. In order to create these variants, currently the instructors have to rely on intuition to accomplish the competing goals of ensuring that variants are different enough to defend against collaborative cheating, and yet similar enough where students are assessed fairly. In this paper, we propose data-driven investigation into these variants. We apply our data-driven investigation into a dataset of three midterm exams from a large introductory programming course. Our results show that (1) observable inequalities of student performance exist between variants and (2) these differences are not just limited to score. Our results also show that the information gathered from our data-driven investigation can be used to provide recommendations for improving design of future variants. 
    more » « less