skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weak magnetohydrodynamic turbulence theory revisited
Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, ⟨δBiδBj⟩k=⟨δB2⟩kδij. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, ⟨δBiδBj⟩k=12 ⟨δB⊥2⟩k(δij−kikj/k2)+⟨δB∥2⟩k(kikj/k2). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.  more » « less
Award ID(s):
2203321
PAR ID:
10592005
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
6
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a recent paper [P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021)], the weak turbulence theory for incompressible magnetohydrodynamics is formulated by employing the method customarily applied in the context of kinetic weak plasma turbulence theory. Such an approach simplified certain mathematical procedures including achieving the closure relationship. The formulation in the above-cited paper starts from the equations of incompressible magnetohydrodynamic (MHD) theory expressed via Elsasser variables. The derivation of nonlinear wave kinetic equation therein is obtained via a truncated solution at the second-order of iteration following the standard practice. In the present paper, the weak MHD turbulence theory is alternatively formulated by employing the pristine form of incompressible MHD equation rather than that expressed in terms of Elsasser fields. The perturbative expansion of the nonlinear momentum equation is carried out up to the third-order iteration rather than imposing the truncation at the second order. It is found that while the resulting wave kinetic equation is identical to that obtained in the previous paper cited above, the third-order nonlinear correction plays an essential role for properly calculating derived quantities such as the total and residual energies. 
    more » « less
  2. This is a companion paper to the previous work [P. H. Yoon, Phys. Plasmas 31, 032309 (2024)] in which the nonlinear susceptibilities of weakly turbulent magnetized plasma are derived under a simplifying assumption of electrostatic interaction. The present paper extends the analysis to a general situation of electromagnetic interaction. The main novelty of the previous and present papers is that by employing the Bessel function addition theorem, the mathematical definitions for the susceptibilities are substantially simplified, a procedure that has not been discussed in the existing literature. In the present paper, a full set of Maxwell’s equations are considered in conjunction with the nonlinear Vlasov equation, which is solved by a perturbative method. The result is a fully general nonlinear susceptibility, given in tensorial form, which is applicable for weakly turbulent magnetized plasmas. 
    more » « less
  3. Abstract The electron VDF in the solar wind consists of a Maxwellian core, a suprathermal halo, a field-aligned component strahl, and an energetic superhalo that deviates from the equilibrium. Whistler wave turbulence is thought to resonantly scatter the observed electron velocity distribution. Wave–particle interactions that contribute to Whistler wave turbulence are introduced into a Fokker–Planck kinetic transport equation that describes the interaction between the suprathermal electrons and the Whistler waves. A recent numerical approach for solving the Fokker–Planck kinetic transport equation has been extended to include a full diffusion tensor. Application of the extended numerical approach to the transport of solar wind suprathermal electrons influenced by Whistler wave turbulence is presented. Comparison and analysis of the numerical results with observations and diagonal-only model results are made. The off-diagonal terms in the diffusion tensor act to depress effects caused by the diagonal terms. The role of the diffusion coefficient on the electron heat flux is discussed. 
    more » « less
  4. We derive new kinetic and a porous medium equations from the nonlinear Schrödinger equation with random potentials. The kinetic equation has a very similar form compared to the four-wave turbulence kinetic equation in the wave turbulence theory. Moreover, we construct a class of self-similar solutions for the porous medium equation. These solutions spread with time, and this fact answers the “weak turbulence” question for the nonlinear Schrödinger equation with random potentials. We also derive Ohm’s law for the porous medium equation. 
    more » « less
  5. When an optical beam propagates through a turbulent medium such as the atmosphere or ocean, the beam will become distorted. It is then natural to seek the best or optimal beam that is distorted least, under some metric such as intensity or scintillation. We seek to maximize the light intensity at the receiver using the paraxial wave equation with weak-fluctuation as the model. In contrast to classical results that typically confine original laser beams to be from a special class, we allow the beam to be general, which leads to an eigenvalue problem of a large-sized matrix with each entry being a multi-dimensional integral. This is an expensive and sometimes infeasible computational task in many practically reasonable settings. To overcome this expense, in a change from past calculations of optimal beams, we transform the calculation from physical space to Fourier space. Since the structure of the turbulence is commonly described in Fourier space, the computational cost is significantly reduced. This also allows us to incorporate some optional turbulence assumptions, such as homogeneous-statistics assumption, small-length-scale cutoff assumption, and Markov assumption, to further reduce the dimension of the numerical integral. The proposed methods provide a computational strategy that is numerically feasible, and results are demonstrated in several numerical examples. These results provide further evidence that special beams can be defined to have beam divergence that is small. 
    more » « less