skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 31, 2026

Title: Model Selection for Sparse Microbial Network Inference using Variational Approximation
Microbial communities are often composed of taxa from different taxonomic groups. The associations among the constituent members in a microbial community play an important role in determining the functional characteristics of the community, and these associations can be modeled using an edge weighted graph (microbial network). A microbial network is typically inferred from a sample–taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa abundance in each sample. Motivated by microbiome studies that involve a large number of samples collected across a range of study parameters, here we consider the computational problem of identifying the number of microbial networks underlying the observed sample-taxa abundance matrix. Specifically, we consider the problem of determing the number of sparse microbial networks in this setting. We use a mixture model framework to address this problem, and present formulations to model both count data and proportion data. We propose several variational approximation based algorithms that allow the incorporation of the sparsity constraint while estimating the number of components in the mixture model. We evaluate these algorithms on a large number of simulated datasets generated using a collection of different graph structures (band, hub, cluster, random, and scale-free).  more » « less
Award ID(s):
2400009
PAR ID:
10592080
Author(s) / Creator(s):
Publisher / Repository:
Springer Verlag
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Singh, Mona (Ed.)
    Microbial associations are characterized by both direct and indirect interactions between the constituent taxa in a microbial community, and play an important role in determining the structure, organization, and function of the community. Microbial associations can be represented using a weighted graph (microbial network) whose nodes represent taxa and edges represent pairwise associations. A microbial network is typically inferred from a sample-taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa counts in each sample. However, it is known that microbial associations are impacted by environmental and/or host factors. Thus, a sample-taxa matrix generated in a microbiome study involving a wide range of values for the environmental and/or clinical metadata variables may in fact be associated with more than one microbial network. Here we consider the problem of inferring multiple microbial networks from a given sample-taxa count matrix. Each sample is a count vector assumed to be generated by a mixture model consisting of component distributions that are Multivariate Poisson Log-Normal. We present a variational Expectation Maximization algorithm for the model selection problem to infer the correct number of components of this mixture model. Our approach involves reframing the mixture model as a latent variable model, treating only the mixing coefficients as parameters, and subsequently approximating the marginal likelihood using an evidence lower bound framework. Our algorithm is evaluated on a large simulated dataset generated using a collection of different graph structures (band, hub, cluster, random, and scale-free). 
    more » « less
  2. Faust, Karoline (Ed.)
    ABSTRACT Microbes commonly organize into communities consisting of hundreds of species involved in complex interactions with each other. 16S ribosomal RNA (16S rRNA) amplicon profiling provides snapshots that reveal the phylogenies and abundance profiles of these microbial communities. These snapshots, when collected from multiple samples, can reveal the co-occurrence of microbes, providing a glimpse into the network of associations in these communities. However, the inference of networks from 16S data involves numerous steps, each requiring specific tools and parameter choices. Moreover, the extent to which these steps affect the final network is still unclear. In this study, we perform a meticulous analysis of each step of a pipeline that can convert 16S sequencing data into a network of microbial associations. Through this process, we map how different choices of algorithms and parameters affect the co-occurrence network and identify the steps that contribute substantially to the variance. We further determine the tools and parameters that generate robust co-occurrence networks and develop consensus network algorithms based on benchmarks with mock and synthetic data sets. The Microbial Co-occurrence Network Explorer, or MiCoNE (available athttps://github.com/segrelab/MiCoNE) follows these default tools and parameters and can help explore the outcome of these combinations of choices on the inferred networks. We envisage that this pipeline could be used for integrating multiple data sets and generating comparative analyses and consensus networks that can guide our understanding of microbial community assembly in different biomes. IMPORTANCEMapping the interrelationships between different species in a microbial community is important for understanding and controlling their structure and function. The surge in the high-throughput sequencing of microbial communities has led to the creation of thousands of data sets containing information about microbial abundances. These abundances can be transformed into co-occurrence networks, providing a glimpse into the associations within microbiomes. However, processing these data sets to obtain co-occurrence information relies on several complex steps, each of which involves numerous choices of tools and corresponding parameters. These multiple options pose questions about the robustness and uniqueness of the inferred networks. In this study, we address this workflow and provide a systematic analysis of how these choices of tools affect the final network and guidelines on appropriate tool selection for a particular data set. We also develop a consensus network algorithm that helps generate more robust co-occurrence networks based on benchmark synthetic data sets. 
    more » « less
  3. null (Ed.)
    We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information. 
    more » « less
  4. null (Ed.)
    We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information. 
    more » « less
  5. null (Ed.)
    We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information. 
    more » « less