skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2026

Title: Bringing Shadowdragons to light: Neurocordulia (Anisoptera: Corduliidae) systematics
Neurocordulia, commonly called shadowdragons, are crepuscular dragonflies, flying mainly at dusk. The genus comprises seven species, which occur across the eastern part of Canada and the United States. Here, we used targeted enrichment probes to sequence ~1000 loci for all specimens of each species, allowing for the first phylogenetic assessment of the genus. Additionally, we collected individuals of N. yamaskanensis from a population in Ontario, Canada, and used whole genome resequencing to estimate population structure. Beyond broadly reconstructing the phylogeny of Neurocordulia, we provided a comprehensive bibliography review of past research on the genus, a key to the species, and distribution models for each species.  more » « less
Award ID(s):
2002489 2002457
PAR ID:
10592111
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Worldwide Dragonfly Association
Date Published:
Journal Name:
International Journal of Odonatology
Volume:
28
ISSN:
1388-7890
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Four new species of Albomagister, a genus of Tricholomataceae in the order Agaricales, are described and illustrated from eastern North America. All four are relatively rare or geographically restricted but two have a broad geographical distribution occurring in southeast Canada and in the southern Appalachians. This study increases the number of known species in the genus from three to seven, five of which occur in eastern North America. A broad concept for the genus is discussed. Illustrations and descriptions of the North American taxa are presented, along with a taxonomic key to the known seven species in the genus worldwide. 
    more » « less
  2. Presentation and illustration of a new species of the genus Paragalactinia, P. pseudomichelii, collected in Canada and the USA, based on morphological and molecular characters. An updated key to the genus Paragalactinia is also provided. 
    more » « less
  3. Distributional checklists of the extant, described species of five superfamilies of Hymenoptera of Canada, Alaska and Greenland are presented. In total, 296 species in 79 genera in 12 families are recorded: 55 species of Ceraphronoidea, classified in 10 genera in 2 families, 205 species of Cynipoidea in 58 genera in 5 families, 30 species of Evanioidea in 5 genera in 3 families of Evanioidea, 2 species of Stephanoidea in 2 genera in 1 family and 4 species of Trigonalyoidea in 4 genera in 1 family. Of the reported species, 281 (in 79 genera in 12 families) are listed from Canada, 31 (in 16 genera in 6 families) from Alaska, and 7 (in 5 genera in 2 families) from Greenland. The list includes 8 new generic records for Canada (1 Ceraphronoidea, 6 Cynipoidea and 1 Evanioidea) and 43 new Canadian species records (13 Ceraphronoidea, 28 Cynipoidea and 2 Evanioidea). For each species in Canada, distribution is tabulated by province or territory, except the province of Newfoundland and Labrador is divided into the island of Newfoundland and the region of Labrador. These checklists are compared with previous Nearctic and Palaearctic surveys, checklists and catalogues.Kleidotoma minimaProvancher, 1883 (Figitidae) is moved from this genus toHexacolaFörster, 1869 to formH. minimum(Provancher, 1883),comb. nov.Amblynotus slossonaeCrawford, 1917 (Figitidae) is moved fromMelanipsWalker, 1835 toAmphithectusHartig, 1840 formingA. slossonae(Crawford, 1917),comb. nov. 
    more » « less
  4. Abstract Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene–environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics‐informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world. 
    more » « less
  5. Abstract The ant genus Tapinoma Foerster, 1850 is a moderately diverse group (81 valid species) that occurs worldwide. It includes the tramp species T. melanocephalum, whose evolutionary history, biogeographic origin, and population limits remain unclear. Here, we present a time-calibrated phylogeny and a biogeographic history inference of the genus based on thousands of Ultraconserved Element (UCE) loci. Focusing on T. melanocephalum, we used single nucleotide polymorphisms from UCE loci and COI sequences to analyze species boundaries based on nuclear and mitochondrial DNA. We recovered a monophyletic Tapinoma with an estimated crown age corresponding to middle Eocene (49.4 to 34.4 Ma). Phylogenomic data differentiated T. melanocephalum from T. jandai, a recently established species based on morphology, and revealed that the 2 species diverged ∼12 Ma. Population genetic analyses identified considerable molecular divergence among sampled T. melanocephalum populations, and a heterogeneous genetic structure, showing a weak relationship between genetic differentiation and geographic distance. A phylogeographic comparison of habitat preferences of T. melanocephalum revealed an ecological shift from undisturbed to urban environments, a phenomenon which may have facilitated its ubiquitous and global distribution. Our study presents the first phylogenomic framework for this globally distributed ant genus and molecularly delineates a worldwide pest ant species. 
    more » « less