Safety-critical embedded systems such as autonomous vehicles typically have only very limited computational capabilities on board that must be carefully managed to provide required enhanced functionalities. As these systems become more complex and inter-connected, some parts may need to be secured to prevent unauthorized access, or isolated to ensure correctness. We propose the multi-phase secure (MPS) task model as a natural extension of the widely used sporadic task model for modeling both the timing and the security (and isolation) requirements for such systems, and develop corresponding scheduling algorithms and associated schedulability tests.Safety-critical embedded systems such as autonomous vehicles typically have only very limited computational capabilities on board that must be carefully managed to provide required enhanced functionalities. As these systems become more complex and inter-connected, some parts may need to be secured to prevent unauthorized access, or isolated to ensure correctness. We propose the multi-phase secure (MPS) task model as a natural extension of the widely used sporadic task model for modeling both the timing and the security (and isolation) requirements for such systems, and develop corresponding scheduling algorithms and associated schedulability tests.
more »
« less
This content will become publicly available on January 1, 2026
Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks
Safety-critical embedded systems such as autonomous vehicles typically have only very limited computational capabilities on board that must be carefully managed to provide required enhanced functionalities. As these systems become more complex and inter-connected, some parts may need to be secured to prevent unauthorized access, or isolated to ensure correctness. We propose the multi-phase secure (MPS) task model as a natural extension of the widely used sporadic task model for modeling both the timing and the security (and isolation) requirements for such systems. Under MPS, task phases reflect execution using different security mechanisms which each have associated execution time costs for startup and teardown. We develop corresponding limited-preemption EDF scheduling algorithms and associated pseudo-polynomial schedulability tests for constrained-deadline MPS tasks. In doing so, we provide a correction to a long-standing schedulability condition for EDF under limited-preemption. Evaluation shows that the proposed tests are efficient to compute for bounded utilizations. We empirically demonstrate that the MPS model successfully schedules more task sets compared to non-preemptive approaches.
more »
« less
- PAR ID:
- 10592397
- Editor(s):
- Brandenburg, Björn B
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Journal Name:
- Leibniz Transactions on Embedded Systems (LITES)
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2199-2002
- Page Range / eLocation ID:
- 3:1-3:27
- Subject(s) / Keyword(s):
- real-time systems limited-preemption scheduling trusted execution environments Computer systems organization → Real-time systems
- Format(s):
- Medium: X Size: 27 pages; 5413198 bytes Other: application/pdf
- Size(s):
- 27 pages 5413198 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The BUNDLE and BUNDLEP scheduling algorithms are cache-cognizant thread-level scheduling algorithms and associated worst case execution time and cache overhead (WCETO) techniques for hard real-time multi-threaded tasks. The BUNDLE-based approaches utilize the inter-thread cache benefit to reduce WCETO values for jobs. Currently, the BUNDLE-based approaches are limited to scheduling a single task. This work aims to expand the applicability of BUNDLE-based scheduling to multiple task multi-threaded task sets. BUNDLE-based scheduling leverages knowledge of potential cache conflicts to selectively preempt one thread in favor of another from the same job. This thread-level preemption is a requirement for the run-time behavior and WCETO calculation to receive the benefit of BUNDLE-based approaches. This work proposes scheduling BUNDLE-based jobs non-preemptively according to the earliest deadline first (EDF) policy. Jobs are forbidden from preempting one another, while threads within a job are allowed to preempt other threads. An accompanying schedulability test is provided, named Threads Per Job (TPJ). TPJ is a novel schedulability test, input is a task set specification which may be transformed (under certain restrictions); dividing threads among tasks in an effort to find a feasible task set. Enhanced by the flexibility to transform task sets and taking advantage of the inter-thread cache benefit, the evaluation shows TPJ scheduling task sets fully preemptive EDF cannot.more » « less
-
The fixed preemption point (FPP) model has been studied as an alternative to fully preemptive and non-preemptive models, as restricting preemptions to specific, predictable locations within a task’s execution can simplify overhead analysis without disallowing preemptions entirely. Prior work has produced response-time analyses for global Earliest Deadline First (G-EDF) scheduling under the FPP model. However, scheduling decisions based solely on task deadlines may be too coarsegrained and may not lead to the lowest response times. In this paper, we propose global FPP EDF-like (G-FPP-EL) scheduling, which assigns a priority point in time for each non-preemptive region of a task. We adapt compliant-vector analysis (CVA) to our model and present general response-time bounds for G-FPPEL schedulers. We then demonstrate that it is possible to design G-FPP-EL schedulers acheiving response-time bounds optimal under CVA and argue that such schedulers should replace global FPP EDF.more » « less
-
Pellizzoni, Rodolfo (Ed.)Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.more » « less
-
Existing models used in real-time scheduling are inadequate to take advantage of simultaneous multithreading (SMT), which has been shown to improve performance in many areas of computing, but has seen little application to real-time systems. The SMART task model, which allows for combining SMT and real time by accounting for the variable task execution costs caused by SMT, is introduced, along with methods and conditions for scheduling SMT tasks under global earliest-deadline-first scheduling. The benefits of using SMT are demonstrated through a large-scale schedulability study in which we show that task systems with utilizations 30% larger than what would be schedulable without SMT can be correctly scheduled. This artifact includes benchmark experiments used to compare execution times with and without SMT and code to duplicate the reported schedulability experiments.more » « less
An official website of the United States government
