skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable Optical Properties and Recombination Dynamics of Ge1-x-ySiySnx Nanoalloys
We report on quantum confined Ge1-x-ySiySnxnanocrystals demonstrating both size- and composition-tunable direct visible/NIR emission (1.77 – 2.47 eV) and recombination dynamics. Temperature-dependent time-resolved photoluminescence suggests significant enhancement of oscillator strengths with Si incorporation.  more » « less
Award ID(s):
2211606
PAR ID:
10592571
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-39-5
Page Range / eLocation ID:
SF2R.2
Format(s):
Medium: X
Location:
Charlotte, North Carolina
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (01)‐Ga2O3 substrates have developed interest in (100), (01)‐(AlxGa1–x)2O3 films. In this work, an investigation of microscopic and spectroscopic characteristics of (100), (01), (010)–(AlxGa1–x)2O3 films is conducted. A combination of scanning transmission electron microscopy, atom probe tomography (APT), and first‐principle calculations (DFT) is performed. The findings reveal consistent in‐plane chemical homogeneity in lower aluminum content (x = 0.2) films. However, higher aluminum content (x = 0.5), showed inhomogeneity in (100), (010)–(AlxGa1–x)2O3 films attributed to their spectroscopic properties. The study expanded APT's capabilities to determine Ga─O and Al─O bond lengths by mapping their ion‐pair separations in detector space. The change in ion‐pair separations is consistent with varying orientations, irrespective of aluminum content. DFT also demonstrated a similar trend, concluding that Ga─O and Al─O bonding energy has an inverse relationship with their bond length as crystallographic orientations vary. This systematic study of growth orientation dependence of (AlxGa1–x)2O3 films’ microscopic and spectroscopic properties will guide the development of new (100) and (01)‐(AlxGa1–x)2O3 along with existing (010)–(AlxGa1–x)2O3 films. 
    more » « less
  2. Abstract Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature. 
    more » « less
  3. Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices. 
    more » « less
  4. Abstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure. 
    more » « less
  5. Abstract We present a systematic analysis of the X-ray emission of a sample of 17 optically selected, X-ray-detected tidal disruption events (TDEs) discovered between 2014 and 2021. The X-ray light curves show a diverse range of temporal behaviors, with most sources not following the expected power-law decline. The X-ray spectra are mostly extremely soft and consistent with thermal emission from the innermost region of an accretion disk, which cools as the accretion rate decreases. Three sources show formation of a hard X-ray corona at late times. The spectral energy distribution shape, probed by the ratio (LBB/LX) between the UV/optical and X-ray, shows a wide range ofLBB/LX∈ (0.5, 3000) at early times and converges to disklike values ofLBB/LX∈ (0.5, 10) at late times. We estimate the fraction of optically discovered TDEs withLX≥ 1042erg s−1to be at least 40% and show that X-ray loudness is independent of black hole mass. We argue that distinct disk formation timescales are unlikely to be able to explain the diverse range of X-ray evolution. We combine our sample with X-ray-discovered ones to construct an X-ray luminosity function, best fit by a broken power law, with a break atLX≈ 1044erg s−1. We show that there is no dichotomy between optically and X-ray-selected TDEs; instead, there is a continuum of early-timeLBB/LX, at least as wide asLBB/LX∈ (0.1, 3000), with optical/X-ray surveys selecting preferentially, but not exclusively, from the higher/lower end of the distribution. Our findings are consistent with unification models for the overall TDE population. 
    more » « less