In this study, we raise the concern that current understandings of user perceptions and decision-making processes may jeopardize the sustainable development of charging infrastructure and wider EV adoption. This study addresses three main concerns: (1) most research focuses solely on battery electric vehicle users, neglecting plug-in hybrid (PHEV) and non-EV owners, thus failing to identify common preferences or transitional perceptions that could guide an inclusive development plan; (2) potential factors influencing charging station selection, such as the availability of nearby amenities and the role of information from social circles and user reviews, are often overlooked; and (3) used methods cannot reveal individual items' importance or uncover patterns between them as they often combine or transform the original items. To address these gaps, we conducted a survey experiment among 402 non-EV, PHEV and EV users and applied network analysis to capture their charging station selection decision-making processes. Our findings reveal that non-EV and PHEV users prioritize accessibility, whereas EV owners focus on the number of chargers. Furthermore, certain technical features, such as vehicle-to-grid capabilities, are commonly disregarded, while EV users place significant importance on engaging in amenities while charging. We also report an evolution of preferences, with users shifting their priorities on different types of information as they transition from non-EV and PHEV to EV ownership. Our results highlight the necessity for adaptive infrastructure strategies that consider the evolving preferences of different user groups to foster sustainable and equitable charging infrastructure development and broader adoption of EVs.
more »
« less
Electric Vehicle Adoption Behavior and Vehicle Transaction Decision: Estimating an Integrated Choice Model with Latent Variables on a Retrospective Vehicle Survey
Electric vehicles (EVs) promise a sustainable solution to mitigating negative emission externalities of transportation systems caused by fossil-fueled conventional vehicles (CVs). While recent developments in battery technology and charging infrastructure can help evolve the niche market of EVs into the mass market, EVs are yet to be widely adopted by the public. This calls for an in-depth understanding of public adoption behavior of EVs as one dimension of vehicle decision making, which itself may be intertwined with other vehicle decision-making dimensions, especially vehicle transaction. This study presents an integrated choice model with latent variables (ICLV) to investigate households’—as a decision-making unit—decisions on vehicle transaction type (i.e., no transaction, sell, add, and trade) and vehicle fuel type (i.e., CVs and all EV types, including hybrid EV, plug-in hybrid EV, and battery EV) choice. To analyze the ICLV model empirically, one of the first revealed preferences national vehicle survey involving CVs and all EV types was conducted, which retrospectively inquired about 1,691 American households’ dynamics of vehicle decision making and demographic attributes over a 10-year period as well as their attitudes/preferences. The model estimation results highlight that EV adoption and vehicle transaction choice is influenced mainly by (1) the dynamics of household demographic attributes and (2) four latent constructs explaining attentiveness to vehicle attributes, social influence, environmental consciousness, and technology savviness. Notably, EV adoption promotion policies are found to be likely most effective on socially influenced individuals, who tend to consider advertisement and social trend more when making vehicle decisions.
more »
« less
- Award ID(s):
- 2112650
- PAR ID:
- 10592628
- Publisher / Repository:
- Sage
- Date Published:
- Journal Name:
- Transportation Research Record: Journal of the Transportation Research Board
- Volume:
- 2678
- Issue:
- 4
- ISSN:
- 0361-1981
- Page Range / eLocation ID:
- 378 to 397
- Subject(s) / Keyword(s):
- demand estimation, planning and analysis, transportation demand forecasting, traveler behavior and values
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electric vehicle (EV) sales have been rapidly growing around the world, spurred by technology advances and policy actions. This study leverages rich data on all individual new light-duty vehicles sold in the United States from 2014 to 2020. We examine how EV attributes, prices, and sales have evolved, exploring substantial heterogeneity across geography, vehicle class, price range, and demographics. We use a matching analysis to compare EVs to similar conventional vehicles to find that EVs have been surprisingly competitive in very recent years. This suggests that constrained supply is an important determinant of the low overall EV market share.more » « less
-
Electric vehicles (EVs) require substantially more copper and other metals than conventional internal combustion engine (ICE) vehicles. For example, manufacture of an ICE automobile requires 24 kg copper whereas manufacture of an EV requires 60 kg. Many have expressed concern that the lack of critical mineral resources may not allow full electrification of the global vehicle transportation fleet, and the vehicle electrification resource demand is just a small part of that needed for the transition. By displaying both demand and mine production in full historical context we show that copper resources are available, but 100% manufacture of EVs by 2035 requires unprecedented rates of mine production. The 100% EV target not only requires significant extra copper for battery manufacture, but also more copper for grid upgrades to support charging, while hybrid electric vehicles do not require extra grid capacity. Under today’s policy settings for copper mining, it is highly unlikely that there will be sufficient additional new mines to achieve 100% EV by 2035. Policymakers might consider changing the vehicle electrification goal from 100% EV to 100% hybrid manufacture by 2035. This would allow for future output of existing and new copper mines to be used for the developing world to catch up with the developed world in electrification. Life cycle emissions for battery electric vehicles compared with hybrid electric vehicles are comparable with each other. Mining must be recognized as essential, and exploration and responsible copper mine development strongly encouraged.more » « less
-
Electric vehicles (EVs) require substantially more copper and other metals than conventional internal combustion engine (ICE) vehicles. For example, manufacture of an ICE automobile requires 24 kg copper whereas manufacture of an EV requires 60 kg. Many have expressed concern that the lack of critical mineral resources may not allow full electrification of the global vehicle transportation fleet, and the vehicle electrification resource demand is just a small part of that needed for the transition. By displaying both demand and mine production in full historical context we show that copper resources are available, but 100% manufacture of EVs by 2035 requires unprecedented rates of mine production. The 100% EV target not only requires significant extra copper for battery manufacture, but also more copper for grid upgrades to support charging, while hybrid electric vehicles do not require extra grid capacity. Under today’s policy settings for copper mining, it is highly unlikely that there will be sufficient additional new mines to achieve 100% EV by 2035. Policymakers might consider changing the vehicle electrification goal from 100% EV to 100% hybrid manufacture by 2035. This would allow for future output of existing and new copper mines to be used for the developing world to catch up with the developed world in electrification. Life cycle emissions for battery electric vehicles compared with hybrid electric vehicles are comparable with each other. Mining must be recognized as essential, and exploration and responsible copper mine development strongly encouraged.more » « less
-
The rise of Electric Vehicles (EVs) has presented a promising solution to the environmental and resource challenges posed by conventional combustion engine vehicles. With their potential to significantly reduce greenhouse gas emissions and enhance air quality, the adoption of EVs is essential for a more sustainable future. However, despite their benefits, widespread adoption remains limited. Thus, understanding the key factors that impact consumer adoption is crucial for promoting their use. This study aims to identify and analyze the various determinants that influence EV adoption, including social and demographic, political, economic, technological, and environmental factors. The findings offer valuable insights into the most significant barriers to EV adoption and provide potential strategies to encourage their use. Furthermore, this study examines the feasibility and sustainability of integrating EVs with public transportation via park-and-ride stations, emphasizing the importance of promoting sustainable transportation given the continued reliance on personal vehicles for park-and-ride travel.more » « less
An official website of the United States government

