skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 11, 2026

Title: Genomes of nine cultured microbes from two hydrologically connected freshwater sites in Wellesley, MA
ABSTRACT We present the genomes of nine cultured microbes isolated from two freshwater sites in Wellesley, MA. The dataset is useful for exploring genomic diversity among freshwater taxa, includingPedobacter,Pseudomonas,Rhodoferax,Rouxiella,andFlavobacterium.  more » « less
Award ID(s):
2316244
PAR ID:
10592674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Putonti, Catherine
Publisher / Repository:
American Society for Microbiology Microbiology Resource Announcements
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
14
Issue:
2
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundHistone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. ResultsFour salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. ConclusionsThis study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes. 
    more » « less
  2. Bose, Arpita (Ed.)
    ABSTRACT Development of genome-editing tools in diverse microbial species is an important step both in understanding the roles of those microbes in different environments, and in engineering microbes for a variety of applications. Freshwater-specific clades of Actinobacteria are ubiquitous and abundant in surface freshwaters worldwide. Here, we show thatRhodoluna lacicolaandAurantimicrobium photophilum, which represent widespread clades of freshwater Actinobacteria, are naturally transformable. We also show that gene inactivation via double homologous recombination and replacement of the target gene with antibiotic selection markers can be used in both strains, making them convenient and broadly accessible model organisms for freshwater systems. We further show that in both strains, the predicted phytoene synthase is the only phytoene synthase, and its inactivation prevents the synthesis of all pigments. The tools developed here enable targeted modification of the genomes of some of the most abundant microbes in freshwater communities. These genome-editing tools will enable hypothesis testing about the genetics and (eco)physiology of freshwater Actinobacteria and broaden the available model systems for engineering freshwater microbial communities. IMPORTANCETo advance bioproduction or bioremediation in large, unsupervised environmental systems such as ponds, wastewater lagoons, or groundwater systems, it will be necessary to develop diverse genetically amenable microbial model organisms. Although we already genetically modify a few key species, tools for engineering more microbial taxa, with different natural phenotypes, will enable us to genetically engineer multispecies consortia or even complex communities. Developing genetic tools for modifying freshwater bacteria is particularly important, as wastewater, production ponds or raceways, and contaminated surface water are all freshwater systems where microbial communities are already deployed to do work, and the outputs could potentially be enhanced by genetic modifications. Here, we demonstrate that common tools for genome editing can be used to inactivate specific genes in two representatives of a very widespread, environmentally relevant group of Actinobacteria. These Actinobacteria are found in almost all tested surface freshwater environments, where they co-occur with primary producers, and genome-editing tools in these species are thus a step on the way to engineering microbial consortia in freshwater environments. 
    more » « less
  3. ABSTRACT MotivationFreshwater ecosystems have been heavily impacted by land‐use changes, but data syntheses on these impacts are still limited. Here, we compiled a global database encompassing 241 studies with species abundance data (from multiple biological groups and geographic locations) across sites with different land‐use categories. This compilation will be useful for addressing questions regarding land‐use change and its impact on freshwater biodiversity. Main Types of Variables ContainedThe database includes metadata of each study, sites location, sample methods, sample time, land‐use category and abundance of each taxon. Spatial Location and GrainThe database contains data from across the globe, with 85% of the sites having well‐defined geographical coordinates. Major Taxa and Level of MeasurementThe database covers all major freshwater biological groups including algae, macrophytes, zooplankton, macroinvertebrates, fish and amphibians. 
    more » « less
  4. Abstract AimCardiac fibrosis contributes to systolic and diastolic dysfunction and can disrupt electrical pathways in the heart. There are currently no therapies that prevent or reverse fibrosis in human cardiac disease. However, animals like freshwater turtles undergo seasonal remodeling of their hearts, demonstrating the plasticity of fibrotic remodeling. InTrachemys scripta, cold temperature affects cardiac load, suppresses metabolism, and triggers a cardiac remodeling response that includes fibrosis. MethodsWe investigated this remodeling using Fourier transform infrared (FTIR) imaging spectroscopy, together with functional assessment of muscle stiffness, and molecular, histological, and enzymatic analyses in control (25°C)T. scriptaand after 8 weeks of cold (5°C) acclimation. ResultsFTIR revealed an increase in absorption bands characteristic of protein, glycogen, and collagen following cold acclimation, with a corresponding decrease in bands characteristic of lipids and phosphates. Histology confirmed these responses. Functionally, micromechanical stiffness of the ventricle increased following cold exposure assessed via atomic force microscopy (AFM) and was associated with decreased activity of regulatory matrix metalloproteinases (MMPs) and increased expression of MMP inhibitors (TMPs) which regulate collagen deposition. ConclusionsBy defining the structural and metabolic underpinnings of the cold‐induced remodeling response in the turtle heart, we show commonalities between metabolic and fibrotic triggers of pathological remodeling in human cardiac disease. We propose the turtle ventricle as a novel model for studying the mechanisms underlying fibrotic and metabolic cardiac remodeling. 
    more » « less
  5. Abstract We use an idealized numerical model to investigate the dynamics and fate of a small river discharging into the surf zone. Our study reveals that the plume reaches a steady state, at which point the combined advective and diffusive freshwater fluxes from the surf zone to the inner shelf balance the river discharge. At a steady state, the surf zone is well mixed vertically due to wave-enhanced vertical turbulent diffusion and has a strong cross-shore salinity gradient. The horizontal gradient drives a cross-shore buoyancy-driven circulation, directed offshore at the surface and onshore near the bottom, which opposes the wave-driven circulation. Using a scaling analysis based on momentum and freshwater budgets, we determine that the steady-state alongshore plume extent (Lp) and the fraction of river water trapped in the surf zone depend on the ratio of the near-field plume length to the surf-zone width (Lnf/Lsz) across a wide range of discharge and wave conditions and a limited set of tidal conditions. This scaling also allows us to predict the residence time and freshwater fraction (or dilution ratio) in the steady-state plume within the surf zone, which ranges from approximately 0.1 to 10 days and from 0.1 to 0.3, respectively. Our findings establish the basic dynamics and scales of an idealized plume in the surf zone, as well as estimates of residence times and dilution rates that may provide guidance to coastal managers. Significance StatementSmall rivers and estuaries often carry pollutants, sediments, and larvae into the coastal ocean, where wave action in the surf zone can trap them near the shore. This process can play an important role in the flux of material into and out of the nearshore ecosystem and presents a potential risk to swimmers when materials are harmful. The present study uses a numerical model to investigate the fate of freshwater discharged from small rivers into the surf zone and the processes through which trapped riverine freshwater escapes from the surf zone. These results establish a basis for predicting the fate of river-borne materials from coastal rivers and understanding the exchange between the surf zone and the inner shelf. Additionally, this work provides a theoretical framework for predicting the residence time and concentration of river-borne material trapped in the surf zone. 
    more » « less