We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters.
more »
« less
This content will become publicly available on March 7, 2026
Formation of magnesium clusters in superfluid helium nanodroplets
Magnesium atoms in liquid helium have been hypothesized to form a metastable foam structure, in which a layer of helium atoms surrounds each magnesium atom, inhibiting their coalescence into a compact cluster. This conjecture is based on the weak interaction between the magnesium atoms themselves and with the helium atoms and was used to explain observations in femtosecond two-photon ionization experiments by different groups. However, this theory is incongruent with previous infrared spectroscopic observations, indicating the formation of tightly bound clusters when different atoms and molecules combine inside liquid helium. In this paper, we report the spectra (from 210 to 2210 nm) of magnesium-doped superfluid helium nanodroplets at different averaged droplet sizes and number of dopants. The measured spectra in this study are consistent with the formation of compact magnesium clusters rather than the metastable foam structure.
more »
« less
- Award ID(s):
- 2404883
- PAR ID:
- 10592860
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 9
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Helium droplets are unique hosts for isolating diverse molecular ions for infrared spectroscopic experiments. Recently, it was found that electron impact ionization of ethylene clusters embedded in helium droplets produces diverse carbocations containing three and four carbon atoms, indicating effective ion–molecule reactions. In this work, similar experiments are reported but with the saturated hydrocarbon precursor of ethane. In distinction to ethylene, no characteristic bands of larger covalently bound carbocations were found, indicating inefficient ion–molecule reactions. Instead, the ionization in helium droplets leads to formation of weaker bound dimers, such as (C2H6)(C2H4)+, (C2H6)(C2H5)+, and (C2H6)(C2H6)+, as well as larger clusters containing several ethane molecules attached to C2H4+, C2H5+, and C2H6+ionic cores. The spectra of larger clusters resemble those for neutral, neat ethane clusters. This work shows the utility of the helium droplets to study small ionic clusters at ultra-low temperatures.more » « less
-
Borghesani, Armando F (Ed.)A new concept of three-phase projection chamber filled with a collection of neon-nitrogen nanoclusters immersed in superfluid helium-4 is proposed for detection light dark matter particles with low masses (0.1–10 Gev/c2). Such a time projection chamber includes a drift region within aerogel-like structure formed by neon-nitrogen nanoclusters filled by superfluid helium and a gas phase camera where electroluminescence takes place. The proposed concept combines the promising properties of liquid helium as a target material for direct detection of light dark matter particles such as high quenching factor, substantial scintillation light, high radiopurity, and high impedance to external vibration noise with the new ones determined by the properties of solid neon and nitrogen. The presence of highly porous impurity structure will enhance the primary scintillation signal (S1) due to light emission stimulated by interactions of metastable He2(a3Σu) molecules and He+ions with impurity nanoclusters. The signal of electrons produced by the recoil event (S2) and drifting in external electric field will get additional input due to energy stored in nitrogen atoms stabilized on the nanoclusters’ surface.more » « less
-
Impurity-helium condensates (IHCs) formed by injecting the discharge products of gaseous mixtures of helium atoms and nitrogen molecules into bulk superfluid 4He at temperature 1.5 K, were studied by X-band electron spin resonance. IHCs consists of collections of N2 nanoclusters which form aerogel-like structure inside bulk HeII. It was found that N2 nanoclusters have a two shell structure, an outer shell which contains high concentration of stabilized N atoms and an interior shell with lower concentrations of N atoms. In this paper, we have studied the dependence of the shell structure of the N2 nanoclusters which compose the IHCs by varying the ratio of nitrogen to helium in the prepared gas mixture from 0.06 to 1%. The highest local concentration of N atoms in nanoclusters (1.2 ⋅ 1021 cm−3 ) was observed in the sample prepared from the gas mixture containing the lowest nitrogen admixture (0.06%). Additionally, the evolution of nanocluster structure was studied as the samples were drained of liquid helium (T ≤ 3.5 K) and warmed beyond the point of explosive recombination (3.5 K ≤ T ≤ 6.5 K).more » « less
-
We studied the electron spin resonance (ESR) spectra of nitrogen atoms stabilized in nitrogen-neon nanoclusters immersed in superfluid 4He. The nanoclusters were formed during the condensation of the products of the discharge in N2–Ne–He gas mixtures into bulk superfluid 4He at temperature 1.5 K. We studied nanoclusters formed by injection of gas mixtures with different ratios of heavy impurities in the helium N2/(Ne + N2 ) ranging from 2% to 90%. Analysis of the ESR spectra of nitrogen atoms stabilized in nitrogen-neon nanoclusters provides important information about the environment of the stabilized atoms and a shell structure of the nanoclusters was revealed. For all samples studied, preferential stabilization of N atoms on the surfaces of the nanoclusters was observed. Annealing of the collection of the nanoclusters in the temperature range 1.1–10 K resulted in substantial changes in the structure of the nanoclusters.more » « less
An official website of the United States government
