skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2026

Title: Blind-label subwavelength ultrasound imaging
There is a long-existing trade-off between the imaging resolution and penetration depth in acoustic imaging caused by the diffraction limit. Most existing approaches addressing this trade-off require controlled “labels,” i.e., metamaterials or contrast agents, to be deposited close to the objects and to either remain static or be tracked precisely during imaging. We propose a “blind-label” approach for acoustic subwavelength imaging. The blind labels are randomly distributed acoustic scatterers with deep-subwavelength sizes whose exact locations and trajectories are not necessary information in image reconstruction. The proposed method achieves the resolution of 0.24 wavelengths in ultrasound imaging experiments and 0.2 wavelengths in simulations, providing over 10 times improvement compared to the diffraction limit. We also elucidate the influence of scatterer size and concentration on imaging performance. The proposed “blind-label” approach relaxes the restrictions of existing acoustic subwavelength imaging technologies relying on controlled labels, therefore substantially improving the practicality of acoustic subwavelength imaging in biomedical ultrasound imaging, sonar, and nondestructive testing.  more » « less
Award ID(s):
2237619
PAR ID:
10592964
Author(s) / Creator(s):
;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
5
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound-modulation of scattered light. While AOI allows optical investigations at depths, its imaging resolution is inherently limited by the ultrasound wavelength, prohibiting microscopic investigations. Here, we propose a computational imaging approach that allows optical diffraction-limited imaging using a conventional AOI system. We achieve this by extracting diffraction-limited imaging information from speckle correlations in the conventionally detected ultrasound-modulated scattered-light fields. Specifically, we identify that since “memory-effect” speckle correlations allow estimation of the Fourier magnitude of the field inside the ultrasound focus, scanning the ultrasound focus enables robust diffraction-limited reconstruction of extended objects using ptychography (i.e., we exploit the ultrasound focus as the scanned spatial-gate probe required for ptychographic phase retrieval). Moreover, we exploit the short speckle decorrelation-time in dynamic media, which is usually considered a hurdle for wavefront-shaping- based approaches, for improved ptychographic reconstruction. We experimentally demonstrate noninvasive imaging of targets that extend well beyond the memory-effect range, with a 40-times resolution improvement over conventional AOI. 
    more » « less
  2. Abstract Optical chiral imaging, as an important tool in chemical and biological analysis, has recently undergone a revolution with the development of chiral metamaterials and metasurfaces. However, the existing chiral imaging approaches based on metamaterials or metasurfaces can only display binary images with 1 bit pixel depth having either black or white pixels. Here, the unique chiral grayscale imaging based on plasmonic metasurfaces of stepped V‐shaped nanoapertures is reported with both high circular dichroism and large polarization linearity in transmission. By interlacing two subarrays of chiral nanoaperture enantiomers into one metasurface, two specific linear polarization profiles are independently generated in transmission under different incident handedness, which can then be converted into two distinct intensity profiles for demonstrating spin‐controlled grayscale images with 8 bit pixel depth. The proposed chiral grayscale imaging approach with subwavelength spatial resolution and high data density provides a versatile platform for many future applications in image encryption and decryption, dynamic display, advanced chiroptical sensing, and optical information processing. 
    more » « less
  3. Acoustic holographic lenses, also known as acoustic holograms, can change the phase of a transmitted wavefront in order to shape and construct complex ultrasound pressure fields, often for focusing the acoustic energy on a target region. These lenses have been proposed for transcranial focused ultrasound (tFUS) to create diffraction-limited focal zones that target specific brain regions while compensating for skull aberration. Holograms are currently designed using time-reversal approaches in full-wave time-domain numerical simulations. Such simulations need time-consuming computations, which severely limits the adoption of iterative optimization strategies. In the time-reversal method, the number and distribution of virtual sources can significantly influence the final sound field. Because of the computational constraints, predicting these effects and determining the optimal arrangement is challenging. This study introduces an efficient method for designing acoustic holograms using a volumetric holographic technique to generate focused fields inside the skull. The proposed method combines a modified mixed-domain method for ultrasonic propagation with a gradient descent iterative optimization algorithm. The findings are further validated in underwater experiments with a realistic 3D-printed skull phantom. This approach enables substantially faster holographic computation than previously reported techniques. The iterative process uses explicitly defined loss functions to bias the ultrasound field’s optimization parameters to specific desired characteristics, such as axial resolution, transversal resolution, coverage, and focal region uniformity, while eliminating the uncertainty associated with virtual sources in time-reversal techniques. The proposed techniques enable more rapid hologram computation and more flexibility in tailoring ultrasound fields for specific therapeutic requirements. 
    more » « less
  4. null (Ed.)
    Far-field analysis of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 theoretical resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 845-nm laser light, reaching a resolution of wavelength/5. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new optical characterization tools with high spatial resolution, fast data acquisition and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscopy 
    more » « less
  5. Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging–assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging. 
    more » « less