skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 26, 2026

Title: Doctoral education in chemistry: faculty perspectives on programmatic elements’ goals and outcomes
This qualitative study investigates the goals and outcomes of the individual programmatic elements within US chemistry doctoral programs, based on faculty perspectives. Forty-six faculty participants were interviewed using an interview protocol that was refined through iterative input and consensus building. Faculty perspectives in this study identifies several programmatic elements—such as research, coursework, lab rotations, candidacy process, and teaching assistantship—and explores the goals and outcomes of each. While the program's structure aims to incorporate essential workforce skills as explicit goals and outcomes, findings indicate that this integration often remains questionable. Further analysis of the goals and outcomes yielded three main insights: there is a misalignment between stated goals and enacted practices, necessitating a holistic reform approach to align goals of programmatic elements with students’ career goals and program goals; the structure of some programmatic elements often causes stress and frustration, highlighting the importance of improved integration and support; significant issues with certainty of the goals and outcomes of programmatic elements were identified, suggesting systemic problems that could lead to ineffective education. Addressing these issues through enhanced clarity, alignment, and practical training is vital for improving the experience of doctoral education in chemistry and better preparing students for their careers. While this study focused on US chemistry doctoral programs, the findings offer a framework for improving doctoral programs by addressing misalignments, unclear goals and outcomes, and the integration of real-world skills, providing insights that are applicable across diverse global educational contexts.  more » « less
Award ID(s):
2142873
PAR ID:
10593028
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Chemistry Society
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
26
Issue:
2
ISSN:
1756-1108
Page Range / eLocation ID:
476 to 493
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Moges, Bekalu Tadesse (Ed.)
    Doctoral education in chemistry (DEC) in the United States is charged with producing scientists who are capable of addressing the world’s Grand Challenges, enhancing quality of life and innovation both domestically and globally through advanced science. However, many believe these doctoral programs are failing to adequately and equitably prepare students for those responsibilities. While numerous challenges have been identified, many are based in perspective and opinion rather than inferred from theory-driven education research. This is problematic as it does not give evidence-based insight into the challenges facing DEC. This qualitative research study aims to address this issue by answering the research question: What are the issues and challenges within doctoral education in chemistry from the faculty perspective? This will be accomplished by interviewing faculty members of chemistry PhD programs and analyzing these interviews to characterize the challenges undermining DEC in the United States. Our findings indicate that there are four main themes characterizing these challenges: 1) universities and faculty struggle to findbalancebetween multiple responsibilities; 2) there are no standard or robustassessmentsto assess student outcomes; 3) theimplementationof many programmatic elements is ineffectual; and 4) inadequacies and inconsistencies withmentorshipare deeply problematic. Research implications for these findings are significant as they give insight into the underlying, systemic challenges that face DEC, rather than simply identifying symptomatic, surface-level issues. This lays the foundation for future research addressing challenges facing DEC. Our results are presented to equip those looking to reform doctoral education with essential insights needed to understand and begin addressing the aforementioned areas of concern. 
    more » « less
  2. Traditional PhD training in STEM fields places a strong emphasis on developing doctoral students' academic skills, encompassing research, academic writing, as well as sharing of knowledge through publications and conference presentations, etc. However, with the ever evolving expectations of graduate training, particularly in applied fields, the demand for PhD has transcended the confines of academia. For instance, nearly 90% of engineering PhDs will not enter academia, which underscores the discrepancy between the current PhD training programs and the preparation of students for future careers. To better support doctoral students especially for those who intend to pursue positions in industry including corporate R&D labs, national labs, defense organizations, healthcare institutes, etc., Lehigh University launched an innovative program called Pasteur Partners PhD (P3) specifically for the training of such doctoral students. It is a student-centered doctoral training program based on use-inspired research in partnership with industry. A preliminary evaluation of the P3 program, which was developed with support from NSF’s IGE program, revealed that students benefited significantly from gaining practical skills through industry involvement such as co-advising, resulting in a clearer understanding of how the industry operates, which, in turn, enhanced their employability in the industry [1]. The University administration also provided significant support for the program. However, a broader implementation of P3 encountered challenges and hesitancy from faculty members. Mostly the senior faculty who already had preexisting connections with industry and junior faculty from certain departments were more receptive to joining the P3 program than others. Could this be a result of the prevailing emphasis of the graduate education system on research output (publications) rather than the training of students for their subsequent careers? What other reasons could there be for the faculty’s lack of enthusiasm for the training of their PhD students following P3 track? To answer above questions and examine the challenges and obstacles that the faculty members feel for student centered doctoral training from an institutional and system perspective, we are conducting a survey specifically targeting faculty members in STEM fields. It seeks to comprehensively understand faculty members’ perspective on the primary objectives of doctoral training within different STEM fields. By exploring these objectives, the survey aims to uncover how they vary across disciplines and what faculty members perceive as the most significant goals in their areas of expertise. Moreover, the survey is designed to shed light on the challenges and hurdles faced by faculty members in their pursuit of these training objectives. Faculty participants are encouraged to identify and articulate the specific obstacles they encounter, whether they pertain to institutional constraints, resource limitations, demands of perceived professional success or other factors that impede the realization of these goals. In addition, the survey takes a close look at the resources that faculty members believe would be beneficial in addressing these challenges and improving the effectiveness of doctoral training. This insight is essential for designing support systems that can empower faculty to contribute to the training of doctoral workforce for the benefit of society at large. The survey seeks to gain valuable perspectives on the qualities and skills considered essential for the success of PhD students. These insights will inform curriculum development and help prepare students better for a wider range of career paths. The results of the survey, currently underway, are presented. 
    more » « less
  3. Current structures of STEM graduate programs raise questions about addressing graduates’ interest in multiple career paths, and how programs prepare graduates for positions increasingly available in varied occupations. This problem is addressed through an innovative doctoral program in engineering, Pathways to Entrepreneurship (PAtENT), which works to develop a scalable alternative student-centered framework. This research explores how this program responds to calls for graduate STEM education to address changes in science and engineering, the nature of the workforce, career goals, and how program components build an entrepreneurial mindset. A mixed-methods design includes a curriculum analysis showing alignment of program components to recommendations for Ph.D. STEM programs from the National Academy of Sciences, Engineering, and Medicine. Direct measures include surveys and interviews developed for current doctoral students and faculty to describe students’ and faculty perspectives about program components, particularly entrepreneurship and the patent process. The curriculum analysis shows strong alignment of the PAtENT program components and activities to the ten elements of the National Academies’ recommendations. A survey of graduate students in engineering, computing, and business show strong measures in engineering and entrepreneurial self-efficacy. Interviews of program participants and faculty demonstrate strong interest in patents and developing entrepreneurship. This innovative program in engineering focusing on obtaining a patent as a capstone shows potential to reform doctoral studies, so candidates are prepared not only for academic careers but a range of industry and government work environments. This work will lead to development of a model for other graduate STEM programs. 
    more » « less
  4. This full paper interrogates the perceptions of mentoring of international STEM doctoral faculty at US universities. International faculty comprise the second largest STEM faculty population in the US, yet little is known about their perceptions surrounding mentoring. Literature informs on the importance of cross-cultural mentoring which is impacted by various factors especially sociocultural and sociopolitical concerns. As a result of the miniscule number of Black and Brown STEM faculty at US institutions, most US underrepresented racially minoritized students have doctoral faculty mentors who are either White or international. These students are negatively impacted when these cross-cultural mentorships fail to be culturally liberative. A qualitative case study using interviewing as method was employed to better understand the perspectives of international faculty teaching in US STEM doctoral programs. Using inductive constant comparative analysis, the study identified three patterns relative to STEM doctoral mentoring by international faculty: focus on pragmatics, science culture as race and culture neutral, and limited ability to empathize with the marginalization of "the other" in spite of marginalization as international faculty. Three implications were developed based on the findings. STEM doctoral education should reimagine mentoring as holistic, embedded in and accountable to cultural understanding, international faculty should draw on their own experiences of marginalization to connect with and better respond to the needs of racially minoritized US STEM doctoral students and international faculty should engage in anti-racism and anti-Black racism training to become aware of ways in which implicit bias and lack of cultural knowledge infiltrates mentoring practice. 
    more » « less
  5. null (Ed.)
    In the last decade, postsecondary institutions have seen a notable increase in makerspaces on their campuses and the integration of these spaces into engineering programs. Yet research into the efficacy of university-based makerspaces is sparse. We contribute to this nascent body of research in reporting on findings from a phenomenological study on the perceptions of faculty, staff, and students concerning six university-based makerspaces in the United States. We discuss the findings using a framework of heterogeneous engineering (integration of the social and technical aspects of engineering practice). Various physical, climate, and programmatic features of makerspaces were read as affordances for students’ development of engineering practices and their continued participation and persistence in engineering. We discuss the potential of makerspaces in helping students develop knowledge, skills, and proclivities that may support their attending to especially wicked societal problems, such as issues of sustainability. We offer implications for makerspace administrators, engineering program leaders, faculty, and staff, as well as those developing and delivering professional development for faculty and staff, to better incorporate makerspaces into the university engineering curriculum. 
    more » « less