The synthesis of polymers from lignin-derivable compounds can replace petrochemical building blocks with a renewable feedstock. However, the end-of-life management of bioderivable, nonbiodegradable polymers remains an outstanding challenge. Herein, the chemical recycling and upcycling of two higher-glass-transition temperature (>100 °C), lignin-derivable polymethacrylates, poly(syringyl methacrylate) (PSM) and poly(guaiacyl methacrylate) (PGM), is reported. Neat PSM and PGM were thermally depolymerized to quantitative conversions, producing their constituent monomers at high yields and purity. The deconstruction atmosphere influenced the depolymerization reaction order, and depolymerization was thermodynamically favored in air over N2. Further, monomer bulkiness and volatility impacted depolymerization activation energies. Notably, bulk depolymerization of PSM and PGM was performed without solvent or catalyst to high polymer conversions (89–90 wt %) and monomer yields (86–90 mol %) without byproduct formation. The resultant monomers were then upcycled to narrow-dispersity polymers and phase-separated block polymers. The findings herein offer a pathway to material circularity for higher-performance, lignin-derivable polymethacrylates.
more »
« less
Mechanochemically Promoted Functionalization of Postconsumer Poly(Methyl Methacrylate) and Poly(α‐Methylstyrene) for Bulk Depolymerization
Abstract We describe a methodology of post‐polymerization functionalization to enable subsequent bulk depolymerization to monomer by utilizing mechanochemical macro‐radical generation. By harnessing ultrasonic chain‐scission in the presence ofN‐hydroxyphthalimide methacrylate (PhthMA), we successfully chain‐end functionalize polymers to promote subsequent depolymerization in bulk, achieving up to 82 % depolymerization of poly(methyl methacrylate) (PMMA) and poly(α‐methylstyrene) (PAMS) within 30 min. This method of depolymerization yields a high‐purity monomer that can be repolymerized. Moreover, as compared to the most common methods of depolymerization, this work is most efficient with ultra‐high molecular weight (UHMW) polymers, establishing a method with the potential to address highly persistent, non‐degradable all‐carbon backbone plastic materials. Lastly, we demonstrate the expansion of this depolymerization method to commercial cell cast PMMA, achieving high degrees of depolymerization from post‐consumer waste. This work is the first demonstration of applying PhthMA‐promoted depolymerization strategies in homopolymer PMMA and PAMS prepared by conventional polymerization methods.
more »
« less
- Award ID(s):
- 2404144
- PAR ID:
- 10593148
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 44
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Helical poly(isocyanide)s are an important class of synthetic polymers possessing a static helical structure. Since their initial discovery, numerous examples of these helices have been fabricated. In this contribution, the synthesis of a chiral, azobenzene (azo)‐containing isocyanide monomer is reported. Upon polymerization with nickel(II) catalysts, a well‐defined circular dichroism (CD) trace is obtained, corresponding to the formation of a right‐handed polymeric helix. The helical polymer, dissolved in chloroform and irradiated with UV light (365 nm), undergoes acistotransisomerization of the azobenzene side‐chains. After the isomerization, a change in conformation of the helix occurs, as evidenced by CD spectroscopy. When the solution is irradiated with LED light, the polymer returns to a right‐handed helical conformation. To open up the possibility for chain‐end post‐polymerization modification of this light‐responsive system, an alkyne‐functionalized nickel(II) catalyst is also used in the polymerization of the azobenzene monomer, resulting in a stimuli‐responsive, terminal‐alkyne‐containing helical poly(isocyanide).more » « less
-
The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers.more » « less
-
Abstract Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)—enabled by dual-initiating and living frustrated Lewis pairs (FLPs)—which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80–130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.more » « less
-
Abstract While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures.more » « less
An official website of the United States government

