skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: Real-Time Trajectory Generation for Soft Robot Manipulators Using Differential Flatness
Soft robots have the potential to interact with sensitive environments and perform complex tasks effectively. However, motion plans and trajectories for soft manipulators are challenging to calculate due to their deformable nature and nonlinear dynamics. This article introduces a fast realtime trajectory generation approach for soft robot manipulators, which creates dynamically-feasible motions for arbitrary kinematically-feasible paths of the robot’s end effector. Our insight is that piecewise constant curvature (PCC) dynamics models of soft robots can be differentially flat, therefore control inputs can be calculated algebraically rather than through a nonlinear differential equation. We prove this flatness under certain conditions, with the curvatures of the robot as the flat outputs. Our two-step trajectory generation approach uses an inverse kinematics procedure to calculate a motion plan of robot curvatures per end-effector position, then, our flatness diffeomorphism generates corresponding control inputs that respect velocity. We validate our approach through simulations of our representative soft robot manipulator along three different trajectories, demonstrating a margin of 23x faster than realtime at a frequency of 100 Hz. This approach could allow fast verifiable replanning of soft robots’ motions in safety-critical physical environments, crucial for deployment in the real world.  more » « less
Award ID(s):
2340111 2209783
PAR ID:
10593180
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE International Conference on Soft Robotics
Date Published:
Format(s):
Medium: X
Location:
Lausanne, Switzerland
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a discrete-optimization technique for finding feasible robot arm trajectories that pass through provided 6-DOF Cartesian-space end-effector paths with high accuracy, a problem called pathwise-inverse kinematics. The output from our method consists of a path function of joint-angles that best follows the provided end-effector path function, given some definition of ``best''. Our method, called Stampede, casts the robot motion translation problem as a discrete-space graph-search problem where the nodes in the graph are individually solved for using non-linear optimization; framing the problem in such a way gives rise to a well-structured graph that affords an effective best path calculation using an efficient dynamic-programming algorithm. We present techniques for sampling configuration space, such as diversity sampling and adaptive sampling, to construct the search-space in the graph. Through an evaluation, we show that our approach performs well in finding smooth, feasible, collision-free robot motions that match the input end-effector trace with very high accuracy, while alternative approaches, such as a state-of-the-art per-frame inverse kinematics solver and a global non-linear trajectory-optimization approach, performed unfavorably. 
    more » « less
  2. null (Ed.)
    In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator. 
    more » « less
  3. In nature, animals with soft body parts demonstrate remarkable control over their shape, such as an elephant trunk wrapping around a tree branch to pick it up. However, most research on robotic manipulators focuses on controlling the end effector, partly because the manipulator’s arm is rigidly articulated. With recent advances in soft robotics research, controlling a soft manipulator into many different shapes will significantly improve the robot’s functionality, such as medical robots morphing their shape to navigate the digestive system and deliver drugs to specific locations. However, controlling the shape of soft robots is challenging due to their highly nonlinear dynamics that are computationally intensive. In this paper, we leverage a physics-informed, data-driven approach using the Koopman operator to realize the shape control of soft robots. We simulate the dynamics of a soft manipulator using a physics-based simulator (PyElastica) to generate the input-output data, which is then used to identify an approximated linear model based on the Koopman operator. We then formulate the shapecontrol problem as a convex optimization problem that is computationally efficient. Our linear model is over 12 times faster than the physics-based model in simulating the manipulator’s motion. Further, we can control a soft manipulator into different shapes using model predictive control. We envision that the proposed method can be effectively used to control the shapes of soft robots to interact with uncertain environments or enable shape-morphing robots to fulfill diverse tasks. 
    more » « less
  4. We present an offline method to generate smooth, feasible motion for robot arms such that end-effector pose goals of a 6-DoF path are matched within acceptable limits specified by the user. Our approach aims to accurately match the position and orientation goals of the given path, and allows deviation from these goals if there is danger of self-collisions, joint-space discontinuities or kinematic singularities. Our method generates multiple candidate trajectories, and selects the best by incorporating sparse user input that specifies what kinds of deviations are acceptable. We apply our method to a range of challenging paths and show that our method generates solutions that achieve smooth, feasible motions while closely approximating the given pose goals and adhering to user specifications. 
    more » « less
  5. Soccer kicking is a complex whole-body motion that requires intricate coordination of various motor actions. To accomplish such dynamic motion in a humanoid robot, the robot needs to simultaneously: 1) transfer high kinetic energy to the kicking leg, 2) maintain balance and stability of the entire body, and 3) manage the impact disturbance from the ball during the kicking moment. Prior studies on robotic soccer kicking often prioritized stability, leading to overly conservative quasistatic motions. In this work, we present a biomechanics-inspired control framework that leverages trajectory optimization and imitation learning to facilitate highly dynamic soccer kicks in humanoid robots. We conducted an in-depth analysis of human soccer kick biomechanics to identify key motion constraints. Based on this understanding, we designed kinodynamically feasible trajectories that are then used as a reference in imitation learning to develop a robust feedback control policy. We demonstrate the effectiveness of our approach through a simulation of an anthropomorphic 25 DoF bipedal humanoid robot, named PresToe, which is equipped with 7 DoF legs, including a unique actuated toe. Using our framework, PresToe can execute dynamic instep kicks, propelling the ball at speeds exceeding 11 m/s in full dynamics simulation. 
    more » « less