skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supramolecular Matter Through Crystal Engineering: Covalent Bond Formation to Postsynthetic Modification
Abstract Supramolecular chemistry can transform organic synthesis by revealing that crystalline materials are not static but rather dynamic environments for controlled covalent bond formations and manipulations. This review focuses on how supramolecular chemistry can be developed to direct molecular synthesis in the organic solid state, directing reliable C─C bond formations to enable transformations difficult or impossible in solution. Special attention is given to postsynthetic modifications that serve to broaden the functional scope of solid‐state reactivity allowing organic crystals to be developed as molecular flasks and a form of supramolecular matter.  more » « less
Award ID(s):
2221086
PAR ID:
10593333
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
31
Issue:
27
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nature is capable of storing solar energy in chemical bonds via photosynthesis through a series of C–C, C–O and C–N bond-forming reactions starting from CO2and light. Direct capture of solar energy for organic synthesis is a promising approach. Lead (Pb)-halide perovskite solar cells reach 24.2% power conversion efficiency, rendering perovskite a unique type material for solar energy capture. We argue that photophysical properties of perovskites already proved for photovoltaics, also should be of interest in photoredox organic synthesis. Because the key aspects of these two applications are both relying on charge separation and transfer. Here we demonstrated that perovskites nanocrystals are exceptional candidates as photocatalysts for fundamental organic reactions, for example C–C, C–N and C–O bond-formations. Stability of CsPbBr3in organic solvents and ease-of-tuning their bandedges garner perovskite a wider scope of organic substrate activations. Our low-cost, easy-to-process, highly-efficient, air-tolerant and bandedge-tunable perovskites may bring new breakthrough in organic chemistry. 
    more » « less
  2. Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  3. Abstract Although cross‐coupling reactions of amides by selective N−C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid‐state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent‐free palladium‐catalyzed cross‐coupling of amides by N−C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N−C bond activation. The reaction shows excellent functional group tolerance and can be applied to late‐stage functionalization of complex APIs and sequential orthogonal cross‐couplings exploiting double solventless solid‐state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N−C bond interconversions to solid‐state environmentally friendly mechanochemical methods. 
    more » « less
  4. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  5. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less