skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hikurangi megathrust slip behavior influenced by lateral variability in sediment subduction
Abstract Subduction megathrusts exhibit a range of slip behaviors spanning from large earthquakes to aseismic creep, yet what controls spatial variations in the dominant slip mechanism remains unresolved. We present multichannel seismic images that reveal a correlation between the lithologic homogeneity of the megathrust and its slip behavior at a subduction zone that is world renowned for its lateral slip behavior transition, the Hikurangi margin. Where the megathrust exhibits shallow slow-slip in the central Hikurangi margin, the protolith of the megathrust changes ~10 km downdip of the deformation front, transitioning from pelagic carbonates to compositionally heterogeneous volcaniclastics. At the locked southern Hikurangi segment, the megathrust forms consistently within pelagic carbonates above thickened nonvolcanic siliciclastic sediments (unit MES), which subduct beyond 75 km horizontally. The presence of the MES layer plays a key role in smoothing over rough volcanic topography and establishing a uniform spatial distribution of lithologies and frictional properties that may enable large earthquake ruptures.  more » « less
Award ID(s):
1949171
PAR ID:
10593401
Author(s) / Creator(s):
; ; ; ;
Editor(s):
NA
Publisher / Repository:
GSA
Date Published:
Journal Name:
Geology
Edition / Version:
1
Volume:
50
Issue:
10
ISSN:
0091-7613
Page Range / eLocation ID:
1145 to 1149
Subject(s) / Keyword(s):
Subduction Hikurangi margin reflection seismology New Zealand
Format(s):
Medium: X Other: ppdf
Sponsoring Org:
National Science Foundation
More Like this
  1. The Hikurangi margin has been an important global focus for subduction zone research for the last decade. International Ocean Discovery Program drilling and geophysical investigations have advanced our understanding of megathrust slip behavior. Along and across the margin, detailed imaging reveals that the megathrust structure varies spatially and evolves over time. Heterogeneous properties of the plate boundary zone and overriding plate are impacted by the evolving nature of regional tectonics and inherited overriding plate structure. Along-strike variability in thickness of subducting sediment and northward increasing influence of seamount subduction strongly influence mega-thrust lithologies, fluid pressure, and permeability structure. Together, these exert strong control on spatial variations in coupling, slow slip, and seismicity distribution. Thicker incoming sediment, combined with a compressional upper plate, influences deeper coupling at southern Hikurangi, where paleoseismic investigations reveal recurring great (Mw> 8.0) earthquakes.▪The Hikurangi Subduction Zone is marked by large-scale changes in the subducting Pacific Plate and the overlying plate, with varied tectonic stress, crustal thickness, and sediment cover.▪The roughness of the lower plate influences the variability in megathrust slip behavior, particularly where seamounts enhance subduction of fluid-rich sediments.▪Variations in sediment composition impact the strength of the subduction interface, with the southern Hikurangi Subduction Zone exhibiting a more uniform megathrust fault.▪Properties of the upper plate influence fluid pressures and contribute to the observed along-strike variations in Hikurangi plate coupling and slip behavior. 
    more » « less
  2. Recurring slow slip along near-trench megathrust faults occurs at many subduction zones, but for unknown reasons, this process is not universal. Fluid overpressures are implicated in encouraging slow slip; however, links between slow slip, fluid content, and hydrogeology remain poorly known in natural systems. Three-dimensional seismic imaging and ocean drilling at the Hikurangi margin reveal a widespread and previously unknown fluid reservoir within the extensively hydrated (up to 47 vol % H2O) volcanic upper crust of the subducting Hikurangi Plateau large igneous province. This ~1.5 km thick volcaniclastic upper crust readily dewaters with subduction but retains half of its fluid content upon reaching regions with well-characterized slow slip. We suggest that volcaniclastic-rich upper crust at volcanic plateaus and seamounts is a major source of water that contributes to the fluid budget in subduction zones and may drive fluid overpressures along the megathrust that give rise to frequent shallow slow slip. 
    more » « less
  3. The Hikurangi margin of New Zealand exhibits contrasting slip behavior from south to north. Whereas the southern Hikurangi margin has a locked plate boundary that can potentially produce large megathrust earthquakes, the northern section of this margin accommodates plate motion by creep and recurring shallow slow-slip events. To investigate these different modes of slip we use marine seismic reflection data to image the reflectivity and seismic velocity structure along profiles across the accretionary wedge. Seismic veloc¬ity images up to 12 km deep and prestack depth migrations together charac¬terize the nature of incoming basement, sediment subduction and accretion, and faulting and compaction of the accretionary wedge. Our seismic velocity models show that a layer of sediment,with seismic wavespeeds of ~3.5 km/s, is entrained beneath the accretionary prism in the southern Hikurangi margin, but there is no coherent subducted sediment layer to the north. This is a significant result, because it implies that the sedi¬ment layer covers basement roughness and forms a smoother plate boundary in the south. In addition, the deepest sediments on the incoming plate in the southern Hikurangi margin are believed to be quartz-rich turbidites, which are prone to unstable slip along the plate boundary. In contrast, the accre¬tionary prism of the northern Hikurangi margin exhibits more variation in accretionary wedge thrust geometry due to interactions with large seamounts on the downgoing oceanic basement. These findings are consistent with the geodetically locked nature of a smooth, quartz-rich plate boundary along the southern Hikurangi subduction zone, and the creeping nature of a heteroge¬neous plate boundary along the Hikurangi margin to the north. 
    more » « less
  4. The Hikurangi margin of New Zealand exhibits contrasting slip behavior from south to north. Whereas the southern Hikurangi margin has a locked plate boundary that can potentially produce large megathrust earthquakes, the northern section of this margin accommodates plate motion by creep and episodic shallow slow-slip events. To investigate these different modes of slip we examine the geometry of the plate boundary and consolidation state of the materials along the plate interface. We use marine seismic reflection data from the SHIRE project to image the reflectivity and seismic velocity structure along 20 profiles across the accretionary wedge of the Hikurangi subduction zone of New Zealand. These active-source seismic data were gathered in 2017 with the R/V Marcus Langseth using a 6,600 in3 seismic source and 12 km long receiver array. We carried out streamer tomography on the SHIRE profiles where we integrated seismic velocity constraints from stacking the reflection data along all SHIRE transects. The seismic velocity images and prestack depth migrations together characterize the nature of incoming basement, sediment subduction and accretion, and faulting and compaction of the accretionary wedge. Our seismic velocity models show that a layer of sediment,with seismic wavespeeds of ~3.0 km/s, is entrained beneath the accretionary prism in the southern Hikurangi margin, but there is no coherent subducted sediment layer to the north. This is a significant result, because it implies that the sediment layer covers basement roughness and forms a smoother plate boundary in the south. In addition, the deepest sediments on the incoming plate in the southern Hikurangi margin are believed to be quartz-rich turbidites, which are prone to unstable slip along the plate boundary. In contrast, the accretionary prism of the northern Hikurangi margin exhibits more variation in accretionary wedge thrust geometry due to interactions with large seamounts on the downgoing oceanic basement. These findings are consistent with the geodetically locked nature of a smooth, quartz-rich plate boundary along the southern Hikurangi subduction zone, and the creeping nature of a heterogeneous plate boundary along the Hikurangi margin to the north. 
    more » « less
  5. Abstract Seamounts are found at many subduction zones and act as seafloor heterogeneities that affect slip behavior on megathrusts. At the Hikurangi subduction zone offshore the North Island, New Zealand, seamounts have been identified on the incoming Pacific plate and below the accretionary prism, but there is little concrete evidence for seamounts subducted beyond the present‐day coastline. Using a high‐resolution, adjoint tomography‐derived velocity model of the North Island, we identify two high‐velocity anomalies below the East Coast and an intraslab low‐velocity zone up‐dip of one of these anomalies. We interpret the high‐velocity anomalies as previously unidentified, deeply subducted seamounts, and the low‐velocity zone as fluid in the subducting slab. The seamounts are inferred to be 10–30 km wide and on the plate interface at 12–15 km depth. Resolution analysis using point spread functions confirms that these are well‐resolved features. The locations of the two seamounts coincide with bathymetric features whose geometries are consistent with those predicted from analog experiments and numerical simulations of seamount subduction. The spatial characteristics of seismicity and slow slip events near the inferred seamounts agree well with previous numerical modeling predictions of the effects of seamount subduction on megathrust stress and slip. Anomalous geophysical signatures, magnetic anomalies, and swarm seismicity have also been observed previously at one or both seamount locations. We propose that permanent fracturing of the northern Hikurangi upper plate by repeated seamount subduction may be responsible for the dichotomous slow slip behavior observed geodetically, and partly responsible for along‐strike variations in plate coupling on the Hikurangi subduction interface. 
    more » « less