skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Effect of nickel phosphide phase on the photo-thermal catalytic hydrogenation of carbon dioxide
The CO2 hydrogenation (HYD) reaction was investigated over Ni phosphide (Ni3P, Ni12P5, Ni2P) catalysts to probe the effect of the NixPy phase on photo-thermal catalytic properties in comparison to Ni metal. The light absorption properties of 2.5 wt% NixPy/SiO2 catalysts differ substantially, with the extent of light absorption decreasing as the P/Ni molar ratio of the Ni phosphide phase increases. This finding directly impacts the photo-thermal catalytic properties as the photo-enhancement (light activity / dark activity) correlates linearly with the extent of light absorption. For comparison purposes, 2.5 wt% Ni/SiO2 catalysts were also investigated and showed high activity but suffered from low CO selectivity (57-68%). A Ni3P/SiO2 catalyst was the most active of the Ni phosphides with high CO selectivity (>95%), while Ni12P5/SiO2 and Ni2P/SiO2 catalysts had lower CO2 HYD activities but CO selectivities above 98%. Upon light exposure, the NixPy/SiO2 (and Ni/SiO2) catalysts exhibited significant rises of temperature (~200 K increase from room temperature), indicating the importance of photothermal heating in increasing the CO2 HYD rate. The findings highlight how a non-metal element (i.e., P) plays a crucial role in tailoring the photo-thermal catalytic properties of earth abundant nickel metal.  more » « less
Award ID(s):
2101259
PAR ID:
10593463
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Khatib, Sheima J; Groppo, Elena
Publisher / Repository:
Elsevier B. V.
Date Published:
Journal Name:
Catalysis Today
Volume:
449
Issue:
C
ISSN:
0920-5861
Page Range / eLocation ID:
115185
Subject(s) / Keyword(s):
Nickel phosphide Catalysis Photothermal Carbon dioxide hydrogenation Reverse water gas shift reaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity. 
    more » « less
  2. TiO 2 supported catalysts have been widely studied for the selective catalytic reduction (SCR) of NO x ; however, comprehensive understanding of synergistic interactions in multi-component SCR catalysts is still lacking. Herein, transition metal elements (V, Cr, Mn, Fe, Co, Ni, Cu, La, and Ce) were loaded onto TiO 2 nanoarrays via ion-exchange using protonated titanate precursors. Amongst these catalysts, Mn-doped catalysts outperform the others with satisfactory NO conversion and N 2 selectivity. Cu co-doping into the Mn-based catalysts promotes their low-temperature activity by improving reducibility, enhancing surface Mn 4+ species and chemisorbed labile oxygen, and elevating the adsorption capacity of NH 3 and NO x species. While Ce co-doping with Mn prohibits the surface adsorption and formation of NH 3 and NO x derived species, it boosts the N 2 selectivity at high temperatures. By combining Cu and Ce as doping elements in the Mn-based catalysts, both the low-temperature activity and the high-temperature N 2 selectivity are enhanced, and the Langmuir–Hinshelwood reaction mechanism was proved to dominate in the trimetallic Cu–Ce–5Mn/TiO 2 catalysts due to the low energy barrier. 
    more » « less
  3. In an epoch dominated by escalating concerns over climate change and looming energy crises, the imperative to design highly efficient catalysts that can facilitate the sequestration and transformation of carbon dioxide (CO2) into beneficial chemicals is paramount. This research presents the successful synthesis of nanofiber catalysts, incorporating monometallic nickel (Ni) and cobalt (Co) and their bimetallic blend, NiCo, via a facile electrospinning technique, with precise control over the Ni/Co molar ratios. Application of an array of advanced analytical methods, including SEM, TGA–DSC, FTIR-ATR, XRD, Raman, XRF, and ICP-MS, validated the effective integration and homogeneous distribution of active Ni/Co catalysts within the nanofibers. The catalytic performance of these mono- and bimetallic Ni/Co nanofiber catalysts was systematically examined under ambient pressure conditions for CO2 hydrogenation reactions. The bimetallic NiCo nanofiber catalysts, specifically with a Ni/Co molar ratio of 1:2, and thermally treated at 1050 °C, demonstrated a high CO selectivity (98.5%) and a marked increase in CO2 conversion rate—up to 16.7 times that of monometallic Ni nanofiber catalyst and 10.8 times that of the monometallic Co nanofiber catalyst. This significant enhancement in catalytic performance is attributed to the improved accessibility of active sites, minimized particle size, and the strong Ni–Co–C interactions within these nanofiber structures. These nanofiber catalysts offer a unique model system that illuminates the fundamental aspects of supported catalysis and accentuates its crucial role in addressing pressing environmental challenges. 
    more » « less
  4. null (Ed.)
    The mechanism of ethene hydrogenation to ethane on six dicationic 3d transition metal catalysts is investigated. Specifically, a combination of density functional theory (DFT), microkinetic modeling, and high throughput reactor experiments is used to interrogate the active sites and mechanisms for Mn@NU-1000, Fe@NU-1000, Co@NU-1000, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000 catalysts, where NU-1000 is a metal–organic framework (MOF) capable of supporting metal cation catalysts. The combination of experiments and simulations suggests that the reaction mechanism is influenced by the electron configuration and spin state of the metal cations as well as the amount of hydrogen that is adsorbed. Specifically, Ni@NU-1000, Cu@NU-1000, and Zn@NU-1000, which have more electrons in their d shells and operate in lower spin states, utilize a metal hydride active site and follow a mechanism where the metal cation binds with one or more species at all steps, whereas Mn@NU-1000, Fe@NU-1000, and Co@NU-1000, which have fewer electrons in their d shells and operate in higher spin states, utilize a bare metal cation active site and follow a mechanism where the number of species that bind to the metal cation is minimized. Instead of binding with the metal cation, catalytic species bind with oxo ligands from the NU-1000 support, as this enables more facile H 2 adsorption. The results reveal opportunities for tuning activity and selectivity for hydrogenation on metal cation catalysts by tuning the properties that influence hydrogen content and spin, including the metal cations themselves, the ligands, the binding environments and supports, and/or the gas phase partial pressures. 
    more » « less
  5. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO. 
    more » « less