skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeePMD-kit v2: A software package for deep potential models
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.  more » « less
Award ID(s):
2209718
PAR ID:
10593491
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
5
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present software infrastructure for the design and testing of new quantum mechanical/molecular mechanical and machine-learning potential (QM/MM−ΔMLP) force fields for a wide range of applications. The software integrates Amber’s molecular dynamics simulation capabilities with fast, approximate quantum models in the xtb package and machine-learning potential corrections in DeePMD-kit. The xtb package implements the recently developed density-functional tight-binding QM models with multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is enhanced by including machine-learning correction potentials (ΔMLPs) enabled through an interface with the DeePMD-kit software. The goal of this paper is to present and validate the implementation of this software infrastructure in molecular dynamics and free energy simulations. The utility of the new infrastructure is demonstrated in proof-of-concept example applications. The software elements presented here are open source and freely available. Their interface provides a powerful enabling technology for the design of new QM/MM−ΔMLP models for studying a wide range of problems, including biomolecular reactivity and protein–ligand binding. 
    more » « less
  2. We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform “system calls” and enable the incorporation of long-range Ewald electrostatics into the external software’s self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM–ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client–server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM–ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications. 
    more » « less
  3. In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations. 
    more » « less
  4. MLMOD is a software package for incorporating machine learning approaches and models into simulations of microscale mechanics and molecular dynamics in LAMMPS. Recent machine learning approaches provide promising data-driven approaches for learning representations for system behaviors from experimental data and high fidelity simulations. The package facilitates learning and using data-driven models for (i) dynamics of the system at larger spatial-temporal scales (ii) interactions between system components, (iii) features yielding coarser degrees of freedom, and (iv) features for new quantities of interest characterizing system behaviors. MLMOD provides hooks in LAMMPS for (i) modeling dynamics and time-step integration, (ii) modeling interactions, and (iii) computing quantities of interest characterizing system states. The package allows for use of machine learning methods with general model classes including Neural Networks, Gaussian Process Regression, Kernel Models, and other approaches. Here we discuss our prototype C++/Python package, aims, and example usage. The package is integrated currently with the mesocale and molecular dynamics simulation package LAMMPS and PyTorch. 
    more » « less
  5. Abstract Multi‐scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems—whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state‐of‐the‐art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi‐scale organization of electroactive organic materials, including biomolecule‐based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic‐abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems. 
    more » « less