skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Fast Periodicity Detection Algorithm Sensitive to Arbitrary Waveforms
Abstract A reexamination of period-finding algorithms is prompted by new large-area astronomical sky surveys that can identify billions of individual sources having a thousand or more observations per source. This large increase in data necessitates fast and efficient period detection algorithms. In this paper, we provide an initial description of an algorithm that is being used for the detection of periodic behavior in a sample of 1.5 billion objects using light curves generated from Zwicky Transient Facility (ZTF) data. We call this algorithm “Fast Periodicity Weighting” (FPW), derived using a Gaussian Process formalism. Periodic sources in ZTF show a wide variety of waveforms, some quite complex, including eclipsing objects, sinusoidally varying objects also exhibiting eclipses, objects with cyclotron emission at various phases, and accreting objects with complex waveforms. A major advantage of the FPW algorithm is that it is sensitive to a broad range of waveforms. We describe the FPW algorithm and its application to ZTF, and provide efficient code for both CPU and GPU.  more » « less
Award ID(s):
2019786
PAR ID:
10593605
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
137
Issue:
5
ISSN:
0004-6280
Format(s):
Medium: X Size: Article No. 054504
Size(s):
Article No. 054504
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the second data release from the Zwicky Transient Facility (ZTF), Chen et al. created a ZTF Catalog of Periodic Variable Stars (ZTF CPVS) of 781,602 periodic variables stars (PVSs) with 11 class labels. Here, we provide a new classification model of PVSs in the ZTF CPVS using a convolutional variational autoencoder and hierarchical random forest. We cross-match the sky-coordinate of PVSs in the ZTF CPVS with those presented in the SIMBAD catalog. We identify non-stellar objects that are not previously classified, including extragalactic objects such as Quasi-Stellar Objects, Active Galactic Nuclei, supernovae and planetary nebulae. We then create a new labeled training set with 13 classes in two levels. We obtain a reasonable level of completeness (≳90%) for certain classes of PVSs, although we have poorer completeness in other classes (∼40% in some cases). Our new labels for the ZTF CPVS are available via Zenodo. 
    more » « less
  2. Abstract The classification of variable objects provides insight into a wide variety of astrophysics ranging from stellar interiors to galactic nuclei. The Zwicky Transient Facility (ZTF) provides time-series observations that record the variability of more than a billion sources. The scale of these data necessitates automated approaches to make a thorough analysis. Building on previous work, this paper reports the results of the ZTF Source Classification Project (SCoPe), which trains neural network and XGBoost (XGB) machine-learning (ML) algorithms to perform dichotomous classification of variable ZTF sources using a manually constructed training set containing 170,632 light curves. We find that several classifiers achieve high precision and recall scores, suggesting the reliability of their predictions for 209,991,147 light curves across 77 ZTF fields. We also identify the most important features for XGB classification and compare the performance of the two ML algorithms, finding a pattern of higher precision among XGB classifiers. The resulting classification catalog is available to the public, and the software developed forSCoPeis open source and adaptable to future time-domain surveys. 
    more » « less
  3. Abstract We have extracted 636 spectra taken at the positions of 583 transient sources from the third data release of the Hobby–Eberly Telescope Dark Energy eXperiment (HETDEX). The transients were discovered by the Zwicky Transient Facility (ZTF) during 2018–2022. The HETDEX spectra provide a potential means to obtain classifications for a large number of objects found by photometric surveys for free. We attempt to explore and classify the spectra by utilizing several template-matching techniques. We have identified two transient sources, ZTF20aatpoos = AT 2020fiz and ZTF19abdkelq, as supernova (SN) candidates. We classify AT 2020fiz as a Type IIP SN observed ∼10 days after explosion, and we propose ZTF19abdkelq as a likely Type Ia SN caught ∼40 days after maximum light. ZTF photometry of these two sources are consistent with their classifications as SNe. Beside these two objects, we have confirmed several ZTF transients as variable active galactic nuclei based on their spectral appearance, and determined the host galaxy types of several other ZTF transients. 
    more » « less
  4. ABSTRACT We report the results from follow-up observations of two Roche-lobe filling hot subdwarf binaries with white dwarf companions predicted to have accretion discs. ZTF J213056.71+442046.5 (ZTF J2130) with a 39-min period and ZTF J205515.98+465106.5 (ZTF J2055) with a 56-min period were both discovered as subdwarf binaries with light curves that could only be explained well by including an accretion disc in their models. We performed a detailed high-resolution spectral analysis, using Keck/ESI to search for possible accretion features for both objects. We also employed polarimetric analysis using the Nordic Optical Telescope (NOT) for ZTF J2130. We did not find any signatures of an accretion disc in either object, and placed upper limits on the flux contribution and variation in degree of polarization due to the disc. Owing to the short 39-min period and availability of photometric data over 6 yr for ZTF J2130, we conducted an extensive O − C timing analysis in an attempt to look for orbital decay due to gravitational wave radiation. No such decay was detected conclusively, and a few more years of data paired with precise and consistent timing measurements were deemed necessary to constrain $$\dot{P}$$ observationally. 
    more » « less
  5. While optical surveys regularly discover slow transients like supernovae on their own, the most common way to discover extragalactic fast transients, fading away in a few nights, is via follow-up observations of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to also identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to faint and fast-fading objects as kilonovae, the optical counterparts to binary neutron stars and neutron star-black hole mergers, out to almost 200Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast optical transients in ZTF data. Using the ZTF alert stream combined with forced photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering of follow-up systems, such as Las Cumbres Observatory, has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independent of any external trigger (though some counterparts were identified later), including at least one supernova with post-shock cooling emission, two known afterglows with an associated gamma-ray burst, two known afterglows without any known gamma-ray counterpart, and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, and ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects which appear to be kilonovae; therefore, we constrain the rate of GW170817-like kilonovae to R<900Gpc−3yr−1. A framework such as ZTFReST could become a prime tool for kilonova and fast transient discovery with the Vera C. Rubin Observatory. 
    more » « less