Photoacoustic imaging–the combination of optics and acoustics to visualize differences in optical absorption – has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
more »
« less
Photoacoustic imaging for surgical guidance: Principles, applications, and outlook
Minimally invasive surgeries often require complicated maneuvers and delicate hand–eye coordination and ideally would incorporate “x-ray vision” to see beyond tool tips and underneath tissues prior to making incisions. Photoacoustic imaging has the potential to offer this feature but not with ionizing x-rays. Instead, optical fibers and acoustic receivers enable photoacoustic sensing of major structures—such as blood vessels and nerves—that are otherwise hidden from view. This imaging process is initiated by transmitting laser pulses that illuminate regions of interest, causing thermal expansion and the generation of sound waves that are detectable with conventional ultrasound transducers. The recorded signals are then converted to images through the beamforming process. Photoacoustic imaging may be implemented to both target and avoid blood-rich surgical contents (and in some cases simultaneously or independently visualize optical fiber tips or metallic surgical tool tips) in order to prevent accidental injury and assist device operators during minimally invasive surgeries and interventional procedures. Novel light delivery systems, counterintuitive findings, and robotic integration methods introduced by the Photoacoustic & Ultrasonic Systems Engineering Lab are summarized in this invited Perspective, setting the foundation and rationale for the subsequent discussion of the author’s views on possible future directions for this exciting frontier known as photoacoustic-guided surgery.
more »
« less
- PAR ID:
- 10593625
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 128
- Issue:
- 6
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes a framework allowing intraoperative photoacoustic (PA) imaging integrated into minimally invasive surgical systems. PA is an emerging imaging modality that combines the high penetration of ultrasound (US) imaging with high optical contrast. With PA imaging, a surgical robot can provide intraoperative neurovascular guidance to the operating physician, alerting them of the presence of vital substrate anatomy invisible to the naked eye, preventing complications such as hemorrhage and paralysis. Our proposed framework is designed to work with the da Vinci surgical system: real-time PA images produced by the framework are superimposed on the endoscopic video feed with an augmented reality overlay, thus enabling intuitive three-dimensional localization of critical anatomy. To evaluate the accuracy of the proposed framework, we first conducted experimental studies in a phantom with known geometry, which revealed a volumetric reconstruction error of 1.20 ± 0.71 mm. We also conducted anex vivostudy by embedding blood-filled tubes into chicken breast, demonstrating the successful real-time PA-augmented vessel visualization onto the endoscopic view. These results suggest that the proposed framework could provide anatomical and functional feedback to surgeons and it has the potential to be incorporated into robot-assisted minimally invasive surgical procedures.more » « less
-
Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrationsPhotoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom andex vivobovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92–24.42 dB, 46.50–67.51 dB, and 0.76–1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.more » « less
-
Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM.more » « less
-
Photoacoustic imaging is a promising technique to provide guidance during multiple surgeries and procedures. One challenge with this technique is that major blood vessels in the liver are difficult to differentiate from surrounding tissue within current safety limits, which only exist for human skin and eyes. In this paper, we investigate the safety of raising this limit for liver tissue excited with a 750 nm laser wavelength and approximately 30 mJ laser energy (corresponding to approximately 150 mJ/cm2fluence). Laparotomies were performed on six swine to empirically investigate potential laser-related liver damage. Laser energy was applied for temporal durations of 1 minute, 10 minutes, and 20 minutes. Lasered liver lobes were excised either immediately after laser application (3 swine) or six weeks after surgery (3 swine). Cell damage was assessed using liver damage blood biomarkers and histopathology analyses of 41 tissue samples total. The biomarkers were generally normal over a 6 week post-surgicalin vivostudy period. Histopathology revealed no cell death, although additional pathology was present (i.e., hemorrhage, inflammation, fibrosis) due to handling, sample resection, and fibrous adhesions as a result of the laparotomy. These results support a new protocol for studying laser-related liver damage, indicating the potential to raise the safety limit for liver photoacoustic imaging to approximately 150 mJ/cm2with a laser wavelength of 750 nm and for imaging durations up to 10 minutes without causing cell death. This investigation and protocol may be applied to other tissues and extended to additional wavelengths and energies, which is overall promising for introducing new tissue-specific laser safety limits for photoacoustic-guided surgery.more » « less
An official website of the United States government
