Strongly bound surface species like alkylamines adsorbed on the Brønsted acid site of aluminosilicate zeolites exhibit negligible rates of molecular desorption, preventing them from achieving an equilibrated state on experimentally relevant timescales that limit the measurement of their adsorption thermodynamics. Through adsorption-assisted desorption, whereby distinct alkylamines facilitate desorption from Brønsted acid sites, we demonstrate that equilibrated states are achieved. Breakthrough adsorption measurements reveal that while 2-butylammonium on a Brønsted acid site is irreversibly adsorbed, it readily undergoes molecular desorption when exposed to a distinct alkylamine like 2-propanamine. As a result, two-adsorbate equilibrium was achieved when exposing Brønsted acid sites of aluminosilicate zeolites to a binary vapor phase alkylamine mixture. By varying relative vapor phase partial pressures and temperatures, we demonstrate the ability to experimentally measure the adsorption enthalpy and entropy of alkylammonium adsorbates on mostly isolated Brønsted acid sites in H-ZSM-5 (Si/Al = 140). A multi-adsorbate Langmuir isotherm was found to quantitatively describe the co-adsorption of alkylamines varying in size and basicity over a wide range of conditions, through which the relative adsorption enthalpy and entropy of alkylamines were measured. Across a homologous family of sec-alkylamines (C3-C5) adsorbed on isolated Brønsted acid sites, a fixed contribution to the enthalpy (19 ± 4 kJ mol CH2-1) and entropy (25 ± 4 J mol CH2-1 K-1) of adsorption per methylene unit of was found to exist, likely resulting from electrostatic interactions between the alkyl chain and surrounding pore environment.
more »
« less
Surface coverage dynamics for reversible dissociative adsorption on finite linear lattices
Dissociative adsorption onto a surface introduces dynamic correlations between neighboring sites not found in non-dissociative absorption. We study surface coverage dynamics where reversible dissociative adsorption of dimers occurs on a finite linear lattice. We derive analytic expressions for the equilibrium surface coverage as a function of the number of reactive sites, N, and the ratio of the adsorption and desorption rates. Using these results, we characterize the finite size effect on the equilibrium surface coverage. For comparable N’s, the finite size effect is significantly larger when N is even than when N is odd. Moreover, as N increases, the size effect decays more slowly in the even case than in the odd case. The finite-size effect becomes significant when adsorption and desorption rates are considerably different. These finite-size effects are related to the number of accessible configurations in a finite system where the odd-even dependence arises from the limited number of accessible configurations in the even case. We confirm our analytical results with kinetic Monte Carlo simulations. We also analyze the surface-diffusion case where adsorbed atoms can hop into neighboring sites. As expected, the odd-even dependence disappears because more configurations are accessible in the even case due to surface diffusion.
more »
« less
- PAR ID:
- 10593690
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 159
- Issue:
- 14
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the common practices in the literature of molecular desorption is the comparison of theoretically (mostly using DFT) calculated single molecule adsorption energies with experimental desorption energies from studies like temperature programmed desorption (TPD) etc. Comparisons like those do not consider that the experimental desorption energies are obtained via ensemble techniques while theoretical values are calculated at the single molecule level. Theoretical values are generally based upon desorption of a single molecule from a clean surface, or upon desorption of an entire monolayer. On the other hand, coverage dependent molecule–molecule interactions add to and modify molecule–substrate interactions that contribute to the experimentally determined desorption energies. In this work, we explore the suitability of an additive nearest neighbor model for determining general coverage dependent single molecule desorption energies in non-covalent self-assembled monolayers (SAMs). These coverage dependent values serve as essential input to any model attempting to reproduce coverage dependent desorption or for understanding the time dependent desorption from a partially covered surface. This method is tested using a case study of coronene adsorbed on Au(111) and HOPG substrates with periodic DFT calculations. Calculations show that coronene exhibits coverage and substrate dependence in molecular desorption. We found that intermolecular contact energies in the coronene monolayer are not strongly influenced by the HOPG substrate, while coronene desorption on Au(111) exhibits strong cooperativity where the additive model fails.more » « less
-
We investigate k-superirreducible polynomials, by which we mean irreducible polynomials that remain irreducible under any polynomial substitution of positive degree at most k. Let F be a finite field of characteristic p. We show that no 2-superirreducible polynomials exist in F[t] when p=2 and that no such polynomials of odd degree exist when p is odd. We address the remaining case in which p is odd and the polynomials have even degree by giving an explicit formula for the number of monic 2-superirreducible polynomials having even degree d. This formula is analogous to that given by Gauss for the number of monic irreducible polynomials of given degree over a finite field. We discuss the associated asymptotic behaviour when either the degree of the polynomial or the size of the finite field tends to infinity.more » « less
-
Classical diffusiophoresis describes the motion of particles in an electrolyte or non-electrolyte solution with an imposed concentration gradient. We investigate the autophoresis of two particles in an electrolyte solution where the concentration gradient is produced by either adsorption or desorption of ions at the particle surfaces. We find that when the sorption fluxes are large, the ion concentration near the particle surfaces, and consequently the Debye length, is strongly modified, resulting in a nonlinear dependence of the phoretic speed on the sorption flux. In particular, we show that the phoretic velocity saturates at a finite value for large desorption fluxes, but depends superlinearly on the flux for adsorption fluxes, where both conclusions are in contrast with previous results that predict a linear relationship between autophoretic velocity and sorption flux. Our theory can also be applied to precipitation/dissolution and other surface chemical processes.more » « less
-
In this paper we study the critical properties of the Heisenberg spin-1/2model on a comb lattice --- a 1D backbone decorated with finite 1D chains --the teeth. We address the problem numerically by a comb tensor network thatduplicates the geometry of a lattice. We observe a fundamental difference betweenthe states on a comb with even and odd number of sites per tooth, whichresembles an even-odd effect in spin-1/2 ladders. The comb with odd teeth isalways critical, not only along the teeth, but also along the backbone, whichleads to a competition between two critical regimes in orthogonal directions.In addition, we show that in a weak-backbone limit the excitation energy scales as1/(NL), and not as 1/N or 1/L typical for 1D systems. For even teeth in theweak backbone limit the system corresponds to a collection of decoupledcritical chains of length L, while in the strong backbone limit, one spin from eachtooth forms the backbone, so the effective length of a critical toothis one site shorter, L-1. Surprisingly, these two regimes are connected via astate where a critical chain spans over two nearest neighbor teeth, with an effectivelength 2L.more » « less
An official website of the United States government
