Sum frequency generation (SFG) necessitates both noncentrosymmetry and coherence over multiple length scales. These requirements make vibrational SFG spectroscopy capable of probing structural information of noncentrosymmetric organic crystals interspersed in polymeric matrices and their three-dimensional spatial distributions within the matrices without spectral interferences from the amorphous components. However, this analysis is not as straightforward as simple vibrational spectroscopy or scattering experiments; it requires knowing the molecular hyperpolarizability of SFG-active vibrational modes and their interplay within the coherence length. This study demonstrates how density function theory (DFT) calculations can be used to construct the molecular hyperpolarizability of a model system and combine it with the SFG theory to predict the polarization and azimuth angle dependences of SFG intensities. A model system with short peptide chains mimicking β-sheet domains in Bombyx mori silk was chosen. SFG signals of the amide-I, II, III, and A bands and one of the CH deformation modes were simulated and compared with the experimental results and the predictions from the group theory. The SFG features of amide-I and A bands of antiparallel β-sheet could be explained with DFT-based theoretical calculations. Although vibrational coupling with neighboring groups breaks the symmetry of the D2 point group, the group theory approach and DFT calculations gave similar results for the amide-I mode. The DFT calculation results for amide-II did not match with experimental data, which suggested vibrational coupling within a larger crystalline domain may dominate the SFG spectral features of these modes. This methodology can be applied to the structural analysis of other biopolymers.
more »
« less
Suppressing sidechain modes and improving structural resolution for 2D IR spectroscopy via vibrational lifetimes
Vibrational spectroscopy of protein structure often utilizes 13C18O-labeling of backbone carbonyls to further increase structural resolution. However, sidechains such as arginine, aspartate, and glutamate absorb within the same spectral region, complicating the analysis of isotope-labeled peaks. In this study, we report that the waiting time between pump and probe pulses in two-dimensional infrared spectroscopy can be used to suppress sidechain modes in favor of backbone amide I′ modes based on differences in vibrational lifetimes. Furthermore, differences in the lifetimes of 13C18O-amide I′ modes can aid in the assignment of secondary structure for labeled residues. Using model disordered and β-sheet peptides, it was determined that while β-sheets exhibit a longer lifetime than disordered structures, amide I′ modes in both secondary structures exhibit longer lifetimes than sidechain modes. Overall, this work demonstrates that collecting 2D IR data at delayed waiting times, based on differences in vibrational lifetime between modes, can be used to effectively suppress interfering sidechain modes and further identify secondary structures.
more »
« less
- Award ID(s):
- 2338970
- PAR ID:
- 10593884
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 5
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
d -Proline ( D Pro, D P) is widely utilized to form β-hairpin loops in engineered peptides that would otherwise be unstructured, most often as part of a D PG sub-unit that forms a β-turn. To observe whether D PG facilitated this effect in short protonated peptides, conformation specific IR–UV double resonance photofragment spectra of the cold (∼10 K) protonated D P and L P diastereomers of the pentapeptide YAPGA was carried out in the hydride stretch (2800–3700 cm −1 ) and amide I/II (1400–1800 cm −1 ) regions. A model localized Hamiltonian was developed to better describe the 1600–1800 cm −1 region commonly associated with the amide I vibrations. The CO stretch fundamentals experience extensive mixing with the N–H bending fundamentals of the NH 3 + group in these protonated peptides. The model Hamiltonian accounts for experiment in quantitative detail. In the D P diastereomer, all the population is funneled into a single conformer which presented as a type II β-turn with A and D P in the i + 1 and i + 2 positions, respectively. This structure was not the anticipated type II′ β-turn across D PG that we had hypothesized based on solution-phase propensities. Analysis of the conformational energy landscape shows that both steric and charge-induced effects play a role in the preferred formation of the type II β-turn. In contrast, the L P isomer forms three conformations with very different structures, none of which were type II/II′ β-turns, confirming that L PG is not a β-turn former. Finally, single-conformation spectroscopy was also carried out on the extended peptide [YAA D PGAAA + H] + to determine whether moving the protonated N-terminus further from D PG would lead to β-hairpin formation. Despite funneling its entire population into a single peptide backbone structure, the assigned structure is not a β-hairpin, but a concatenated type II/type II′ double β-turn that displaces the peptide backbone laterally by about 7.5 Å, but leaves the backbone oriented in its original direction.more » « less
-
Peptide backbone amide substitution can dramatically alter the conformational and physiochemical properties of native sequences. Although uncommon relative to N -alkyl substituents, peptides harboring main-chain N -hydroxy groups exhibit unique conformational preferences and biological activities. Here, we describe a versatile method to prepare N -hydroxy peptide on solid support and evaluate the impact of backbone N -hydroxylation on secondary structure stability. Based on previous work demonstrating the β-sheet-stabilizing effect of α-hydrazino acids, we carried out an analogous study with N -hydroxy-α-amino acids using a model β-hairpin fold. In contrast to N -methyl substituents, backbone N -hydroxy groups are accommodated in the β-strand region of the hairpin without energetic penalty. An enhancement in β-hairpin stability was observed for a di- N -hydroxylated variant. Our results facilitate access to this class of peptide derivatives and inform the use of backbone N -hydroxylation as a tool in the design of constrained peptidomimetics.more » « less
-
Short peptides have emerged as versatile building blocks for supramolecular structures and hydrogels. In particular, the presence of aromatic amino acid residues and/or aromatic end groups is generally considered to be a prerequisite for initiating aggregation of short peptides into nanotubes or cross β-sheet type fibrils. However, the cationic GAG tripeptide surprisingly violates these rules. Specifically, in water/ethanol mixtures, GAG peptides aggregate into very long crystalline fibrils at temperatures below 35 °C where they eventually form a spanning network structure and, thus, a hydrogel. Two gel phases are formed in this network, and they differ substantially in chirality and thickness of the underlying fibrils, their rheological parameters, and the kinetics of oligomerization, fibrilization, and gel formation. The spectroscopic data strongly suggests that the observed fibrils do not exhibit canonical cross β-sheet structures and are indicative of a yet unknown secondary conformation. To complement our unusual experimental observations in this perspective article, we performed large-scale DFT calculations to probe the geometry and spectroscopic properties of these GAG oligomers. Most importantly, our experimental and computational results yield rather unconventional structures that are not reminiscent of classical cross-β-sheet structures, and we give two extremely likely candidates for oligomer structures that are consistent with experimental amide I′ profiles in IR and vibrational circular dichroism (VCD) spectra of the two gel phases.more » « less
-
Conformational modulation and polymerization-induced folding of proteomimetic peptide brush polymersPeptide-brush polymers generated by graft-through living polymerization of peptide-modified monomers exhibit high proteolytic stability, therapeutic efficacy, and potential as functional tandem repeat protein mimetics. Prior work has focused on polymers generated from structurally disordered peptides that lack defined conformations. To obtain insight into how the structure of these polymers is influenced by the folding of their peptide sidechains, a set of polymers with varying degrees of polymerization was prepared from peptide monomers that adopt α-helical secondary structure for comparison to those having random coil structures. Circular dichroism and nuclear magnetic resonance spectroscopy confirm the maintenance of the secondary structure of the constituent peptide when polymerized. Small-angle X-ray scattering (SAXS) studies reveal the solution-phase conformation of PLPs in different solvent environments. In particular, X-ray scattering shows that modulation of solvent hydrophobicity, as well as hydrogen bonding patterns of the peptide sidechain, plays an important role in the degree of globularity and conformation of the overall polymer, with polymers of helical peptide brushes showing less spherical compaction in conditions where greater helicity is observed. These structural insights into peptide brush folding and polymer conformation inform the design of these proteomimetic materials with promise for controlling and predicting their artificial fold and morphologymore » « less
An official website of the United States government
