Abstract As nanotechnology becomes increasingly used in biomedicine, it is important to have techniques by which to examine the structure and dynamics of biologically-relevant molecules on the surface of engineered nanoparticles. Previous work has shown that Saturation-Transfer Difference (STD)-NMR can be used to explore the interaction between small molecules, including amino acids, and the surface of polystyrene nanoparticles. Here we use STD-NMR to further explore the different driving forces that are responsible for these interactions. Electrostatic effects are probed by using zwitterionic polystyrene beads and performing STD-NMR experiments at high, low, and neutral pH, as well as by varying the salt concentration and observing the effect on the STD buildup curve. The influence of dispersion interactions on ligand-nanoparticle binding is also explored, by establishing a structure–activity relationship for binding using a series of unnatural amino acids with different lengths of hydrophobic side chains. These results will be useful for predicting which residues in a peptide are responsible for binding and for understanding the driving forces for binding between peptides and nanoparticles in future studies.
more »
« less
This content will become publicly available on April 16, 2026
Squaramide-based ion pair receptors can facilitate transmembrane transport of KCl and zwitterions including highly polar amino acids
Misregulation of transmembrane ion transport in biological systems has been linked to a variety of diseases. As a result, supramolecular chemists have been trying to develop small molecules that facilitate the transmembrane transport of several ionic species. However, ion transport by small molecules is a passive process and needs to be overall charge neutral (i.e., when an ion is transported across a membrane, another ion needs to be transported as well to avoid charge separation). Ion pair receptors could therefore have great potential as transmembrane ion transporters because they can facilitate transport of an overall neutral species. Furthermore, ditopic ion pair receptors also have the potential to transport biologically important zwitterionic species, such as amino acids. In this manuscript, we report the synthesis of a series of ditopic receptors based on squaramides as the anion binding unit and 18-crown-6 as the cation binding unit. UV-vis and NMR titrations revealed that these compounds can bind a variety of chloride salts, especially KCl. Furthermore, liquid–liquid extractions and transport experiments using bulk liquid membranes and liposomes indicate that these ditopic receptors are capable of transporting chloride salts and hydrophilic amino acids. In fact, compound 5 was even able to facilitate the transport of amino acids with charged side chains at physiological pH (arginine and glutamate), making it the first example of a small molecule that can transport these highly polar and charge-dense species. These findings open up the possibility of using these receptors in a wide range of biological applications.
more »
« less
- Award ID(s):
- 2108699
- PAR ID:
- 10594085
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 16
- Issue:
- 16
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 6982 to 6990
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore an idealized theoretical model for ion transport within highly asymmetric ionic liquid mixtures. A primitive model-inspired system serves as a representative for asymmetric ionic materials (such as liquid crystalline salts) which quench to form disordered, partially arrested phases. Self-consistent generalized Langevin equation theory is applied to understand the connection between the size ratio of charge-matched salts and their average mobility. Within this model, we identify novel glassy states where one of the two charged species (without loss of generality, either the macro-cation or the micro-anion) is arrested, while the other retains liquid-like mobility. We discuss how this result is useful in the development of novel single-ion conducting phases in ionic liquid-based materials, for instance, conductors operating at low temperature or the technology associated with ionic liquid crystals.more » « less
-
Decoupling the ion motion and segmental relaxation is significant for developing advanced solid polymer electrolytes with high ionic conductivity and high mechanical properties. Our previous work proposed a decoupled ion transport in a novel protein-based solid electrolyte. Herein, we investigate the detailed ion interaction/transport mechanisms through first-principles density functional theory (DFT) calculations in a vacuum space. Specifically, we study the important roles of charged amino acids from proteins. Our results show that the charged amino acids (i.e., Arg and Lys) can strongly lock anions (ClO4−). When locked at a proper position (determined from the molecular structure of amino acids), the anions can provide additional hopping sites and facilitate Li+ transport. The findings are supported from our experiments of two protein solid electrolytes, in which the soy protein (with plenty of charged amino acids) electrolyte shows much higher ionic conductivity and lower activation energy in comparison to the zein (lack of charged amino acids) electrolyte.more » « less
-
Abstract Low ionic conductivity is one of the main hurdles for the practical application of advanced all‐solid‐state lithium‐ion batteries. Protein‐based solid electrolytes are recently proposed and can potentially provide both high ionic conductivity and high mechanical properties due to the decoupled ion transport mechanism. In this work, the effects of lithium salts and protein structures on the performance of protein‐based electrolytes through both ab initio density functional theory calculations and experiments are systematically investigated. The results show that the anions can be strongly locked by the charged amino acids, thus providing intermediate hopping sites for lithium‐ion, reducing energy barrier for lithium‐ion transport, and then enhancing the ionic conductivity. These calculations also demonstrate that need to be locked at appropriate positions by properly controlling the protein structures in order to provide bridging effects and facilitate lithium‐ion transport. The findings are consistent with the experimental observations and can provide guidance for design and optimization of protein‐based solid electrolytes.more » « less
-
Cation exchange membranes (CEMs) are widely used in many applications. The fixed anionic groups e.g., COO , –SO3 - , etc. in the polymer matrix ideally allows the passage only of oppositely charged cations, driven by a potential or a concentration gradient. Anions, charged negative, the same as the membrane matrix, cannot pass through the membrane due to electrostatic repulsion. Such “Donnan-forbidden” passage can, however, occur to some degree, if the electrical or concentration gradient is high enough to overcome the “Donnan barrier”. Except for salt uptake/transport in concentrated salt solutions, the factors that govern such Forbidden Ion Transport (FIT) have rarely been studied. In most applications of transmembrane ion transport, whether electrically driven as in electrodialysis, or concentration-driven, it is the transport of the counterion to the fixed charged groups, such as that of the proton through a CEM, that is usually of interest. Nevertheless, CEMs are also of interest in analytical chemistry, specifically in suppressed ion chromatography. As used in membrane suppressors, both transport of permitted ions and rejection of forbidden ions are important. If the latter is indeed governed by electrostatic factors, other things being equal, the primary governing factor should be the charge density of the membrane, tantamount to its ion exchange capacity (IEC). In fabricating microscale suppressors, we found useful to synthesize a new ion exchange polymer that can be easily molded to make tubular microconduits. Despite a high IEC of this material, FIT was also found to be surprisingly high. We measured several relevant properties for thirteen commercial and four custom-made membranes to discover that while FIT is indeed linearly related to 1/ IEC for a significant number of these membranes, for very high water-content membranes, FIT may be overwhelmingly governed by the water content of the membrane. In addition, FIT through all CEMs differ greatly among strong acids, they may still be transported as the molecular acids and the extent is in the same order as the expected activity of the molecular acid in the CEM. These results are discussed with the perspective that even for strong acids, the transport does take place as un-ionized molecular acids.more » « less
An official website of the United States government
