Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales.
more »
« less
This content will become publicly available on March 24, 2026
Responses to climate change – insights and limitations from herbaceous plant model systems
Herbaceous plant species have been the focus of extensive, long-term research into climate change responses, but there has been little effort to synthesize results and predicted outlooks from different model species. We summarize research on climate change responses for eight intensively-studied herbaceous plant species. We establish generalities across species, examine limitations, interrogate biases, and propose a path forward. All six forb species exhibit reduced fitness, maladaptation, and/or population declines in at least part of the range. Plasticity alone is likely not sufficient to allow adjustment to shifting climates. Most model species also have spatially-restricted dispersal that may limit genetic and evolutionary rescue. These results are surprising, given that these species are widespread, span large elevation ranges, and generally have substantial levels of genetic and phenotypic variation. The focal species have diverse life histories, reproductive strategies, and habitats, but most are native to North America. Thus, these species may poorly represent rare species, habitat specialists, or species endemic to other parts of the world. We encourage researchers to design demographic and field experiments that evaluate plant traits and fitness in contemporary and potential future conditions across the full life cycle, and that consider the effects of climate change on biotic interactions.
more »
« less
- PAR ID:
- 10594130
- Publisher / Repository:
- EcoEvoRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effects of climate change on tropical forests may have global consequences due to the forests’ high biodiversity and major role in the global carbon cycle. In this study, we document the effects of experimental warming on the abundance and composition of a tropical forest floor herbaceous plant community in the Luquillo Experimental Forest, Puerto Rico. This study was conducted within Tropical Responses to Altered Climate Experiment (TRACE) plots, which use infrared heaters under free‐air, open‐field conditions, to warm understory vegetation and soils + 4°C above nearby control plots. Hurricanes Irma and María damaged the heating infrastructure in the second year of warming, therefore, the study included one pretreatment year, one year of warming, and one year of hurricane response with no warming. We measured percent leaf cover of individual herbaceous species, fern population dynamics, and species richness and diversity within three warmed and three control plots. Results showed that one year of experimental warming did not significantly affect the cover of individual herbaceous species, fern population dynamics, species richness, or species diversity. In contrast, herbaceous cover increased from 20% to 70%, bare ground decreased from 70% to 6%, and species composition shifted pre to posthurricane. The negligible effects of warming may have been due to the short duration of the warming treatment or an understory that is somewhat resistant to higher temperatures. Our results suggest that climate extremes that are predicted to increase with climate change, such as hurricanes and droughts, may cause more abrupt changes in tropical forest understories than longer‐term sustained warming.more » « less
-
Abstract The success of plant species under climate change will be determined, in part, by their phenological responses to temperature. Despite the growing need to forecast such outcomes across entire species ranges, it remains unclear how phenological sensitivity to temperature might vary across individuals of the same species. In this study, we harnessed community science data to document intraspecific patterns in phenological temperature sensitivity across the multicontinental range of six herbaceous plant species. Using linear models, we correlated georeferenced temperature data with 23 220 plant phenological records from iNaturalist to generate spatially explicit estimates of phenological temperature sensitivity across the shared range of species. We additionally evaluated the geographic association between local historic climate conditions (i.e. mean annual temperature [MAT] and interannual variability in temperature) and the temperature sensitivity of plants. We found that plant temperature sensitivity varied substantially at both the interspecific and intraspecific levels, demonstrating that phenological responses to climate change have the potential to vary both within and among species. Additionally, we provide evidence for a strong geographic association between plant temperature sensitivity and local historic climate conditions. Plants were more sensitive to temperature in hotter climates (i.e. regions with high MAT), but only in regions with high interannual temperature variability. In regions with low interannual temperature variability, plants displayed universally weak sensitivity to temperature, regardless of baseline annual temperature. This evidence suggests that pheno-climatic forecasts may be improved by accounting for intraspecific variation in phenological temperature sensitivity. Broad climatic factors such as MAT and interannual temperature variability likely serve as useful predictors for estimating temperature sensitivity across species’ ranges.more » « less
-
Summary Most plant–microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume–rhizobia nitrogen‐fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high‐throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life‐cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia – and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.more » « less
-
Abstract Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.more » « less