Abstract Background Nuclear endosperm development is a common mechanism among Angiosperms, including Arabidopsis. During nuclear development, the endosperm nuclei divide rapidly after fertilization without cytokinesis to enter the syncytial phase, which is then followed by the cellularized phase. The endosperm can be divided into three spatial domains with distinct functions: the micropylar, peripheral, and chalazal domains. Previously, we identified two putative small invertase inhibitors, InvINH1 and InvINH2, that are specifically expressed in the micropylar region of the syncytial endosperm. In addition, ectopically expressing InvINH1 in the cellularized endosperm led to a reduction in embryo growth rate. However, it is not clear what are the upstream regulators responsible for the specific expression of InvINHs in the syncytial endosperm. Results Using protoplast transient expression system, we discovered that a group of type I MADS box transcription factors can form dimers to activate InvINH1 promoter. Promoter deletion assays carried out in the protoplast system revealed the presence of an enhancer region in InvINH1 promoter, which contains several consensus cis-elements for the MADS box proteins. Using promoter deletion assay in planta , we further demonstrated that this enhancer region is required for InvINH1 expression in the syncytial endosperm. One of the MADS box genes, AGL62, is a key transcription factor required for syncytial endosperm development. Using promoter-GFP reporter assay, we demonstrated that InvINH1 and InvINH2 are not expressed in agl62 mutant seeds. Collectively, our data supports the role of AGL62 and other type I MADS box genes as the upstream activators of InvINHs expression in the syncytial endosperm. Conclusions Our findings revealed several type I MADS box genes that are responsible for activating InvINH1 in the syncytial endosperm, which in turn regulates embryo growth rate during early stage of seed development.
more »
« less
This content will become publicly available on April 24, 2026
Regulation of the promoter for capsular polysaccharide synthesis in Neisseria meningitidis serogroup B by HTH_XRE family transcription factor
The capsular polysaccharide synthesis (cps) locus of Neisseria meningitidis is implicated in invasive meningococcal disease. The synthesis (synABCD) and transport (ctrABCD) operons are transcribed in opposite directions from a common intergenic region, and the expression is negatively regulated by the bacterial two-component system (TCS) misR/misS and thermosensitive RNA folding. However, these mechanisms do not fully explain the stationary phase responses, and the cis-acting elements remain to be fully characterized. Using the GFP reporter gene and site-directed mutagenesis, cis-regulatory elements in the 134 bp intergenic region, NmIR, were investigated. While confirming a known RpoD promoter, an additional potential promoter element and putative binding sites for the transcription factors fis and lexA were identified through sequence analysis. Deletion of the putative lexA binding site led to an increase in GFP fluorescence. The N. meningitidis genome carries only one lexA homolog, the helix-turn-helix regulator XRE family member (GenBank-NMB0910, HTH_XRE). Trans-complementation of the NmIR-GFP reporter with the N. meningitidis HTH_XRE expression plasmid led to increased fluorescence. Trans-complementation with either misR/misS or nusG decreased reporter gene expression. Consistent with previous reports, deletion of the RpoD promoter reduced expression by 50%, suggesting the redundancy of promoter elements in the intergenic region. Thus, the results confirm the functioning of an exogenous N. meningitidis capsule synthesis promoter in Escherichia coli and demonstrate its regulation through trans-complementation by misR/misS, HTH_XRE, and nusG.
more »
« less
- Award ID(s):
- 2100978
- PAR ID:
- 10594321
- Editor(s):
- Atack, John M
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- Microbiology Spectrum
- ISSN:
- 2165-0497
- Subject(s) / Keyword(s):
- HTH_XRE transcription factor, cis-regulatory elements, capsular polysaccharides synthesis, two-component regulatory systems, Neisseria meningitidis, misR/misS, NusG, CrgA, transcription factors, RpoD
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal “on” expression when PhoB is active, minimal background in the “off” state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri , enabling us to identify bases at particular randomized positions that significantly correlated with high-level “on” or low-level “off” expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri . In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes , the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering. IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the “on” and “off” states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri . This promoter design strategy will facilitate the engineering of other regulator-specific reporters.more » « less
-
Crosson, Sean (Ed.)Quorum sensing is a chemical communication process that bacteria use to coordinate group behaviors. In the global pathogen Vibrio cholerae , one quorum-sensing receptor and transcription factor, called VqmA (VqmA Vc ), activates expression of the vqmR gene encoding the small regulatory RNA VqmR, which represses genes involved in virulence and biofilm formation. Vibriophage VP882 encodes a VqmA homolog called VqmA Phage that activates transcription of the phage gene qtip , and Qtip launches the phage lytic program. Curiously, VqmA Phage can activate vqmR expression but VqmA Vc cannot activate expression of qtip . Here, we investigate the mechanism underlying this asymmetry. We find that promoter selectivity is driven by each VqmA DNA-binding domain and key DNA sequences in the vqmR and qtip promoters are required to maintain specificity. A protein sequence-guided mutagenesis approach revealed that the residue E194 of VqmA Phage and A192, the equivalent residue in VqmA Vc , in the helix-turn-helix motifs contribute to promoter-binding specificity. A genetic screen to identify VqmA Phage mutants that are incapable of binding the qtip promoter but maintain binding to the vqmR promoter delivered additional VqmA Phage residues located immediately C-terminal to the helix-turn-helix motif as required for binding the qtip promoter. Surprisingly, these residues are conserved between VqmA Phage and VqmA Vc . A second, targeted genetic screen revealed a region located in the VqmA Vc DNA-binding domain that is necessary to prevent VqmA Vc from binding the qtip promoter, thus restricting DNA binding to the vqmR promoter. We propose that the VqmA Vc helix-turn-helix motif and the C-terminal flanking residues function together to prohibit VqmA Vc from binding the qtip promoter.more » « less
-
Genetic dissection of cis -regulatory control of ZmWUSCHEL1 expression by type B RESPONSE REGULATORSAbstract Mutations in cis-regulatory regions play an important role in the domestication and improvement of crops by altering gene expression. However, assessing the in vivo impact of cis-regulatory elements (CREs) on transcriptional regulation and phenotypic outcomes remains challenging. Previously, we showed that the dominant Barren inflorescence3 (Bif3) mutant of maize (Zea mays) contains a duplicated copy of the homeobox transcription factor gene ZmWUSCHEL1 (ZmWUS1), named ZmWUS1-B. ZmWUS1-B is controlled by a spontaneously generated novel promoter region that dramatically increases its expression and alters patterning and development of young ears. Overexpression of ZmWUS1-B is caused by a unique enhancer region containing multimerized binding sites for type B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. To better understand how the enhancer increases the expression of ZmWUS1 in vivo, we specifically targeted the ZmWUS1-B enhancer region by CRISPR-Cas9-mediated editing. A series of deletion events with different numbers of type B RR DNA binding motifs (AGATAT) enabled us to determine how the number of AGATAT motifs impacts in vivo expression of ZmWUS1-B and consequently ear development. In combination with dual-luciferase assays in maize protoplasts, our analysis reveals that AGATAT motifs have an additive effect on ZmWUS1-B expression, while the distance separating AGATAT motifs does not appear to have a meaningful impact, indicating that the enhancer activity derives from the sum of individual CREs. These results also suggest that in maize inflorescence development, there is a threshold of buffering capacity for ZmWUS1 overexpression.more » « less
-
The evolution of transcriptional regulatory mechanisms is central to how stress response and tolerance differ between species. However, it remains largely unknown how divergence in cis-regulatory sites and, subsequently, transcription factor (TF) binding specificity contribute to stress-responsive expression divergence, particularly between wild and domesticated spe-cies. By profiling wound-responsive gene transcriptomes in wild Solanum pennellii and do-mesticated S. lycopersicum, we found extensive wound-response divergence and identified 493 S. lycopersicum and 278 S. pennellii putative cis-regulatory elements (pCREs) that were predictive of wound-responsive gene expression. Only 24-52% of these wound-response pCREs (depending on wound-response patterns) were consistently enriched in the putative promoter regions of wound-responsive genes across species. In addition, between these two species, their differences in pCRE site sequences were significantly and positively correlated with differences in wound-responsive gene expression. Furthermore, ~11-39% of pCREs were specific to only one of the species and likely bound by TFs from different families. These findings indicate substantial regulatory divergence in these two plant species that di-verged ~3-7 million years ago. Our study provides insights into the mechanistic basis of how the transcriptional response to wounding is regulated and, importantly, the contribution of cis-regulatory components to variation in wound-responsive gene expression between a wild and a domesticated plant species.more » « less
An official website of the United States government
