skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 17, 2026

Title: Kingdom-Wide CRISPR Guide Design with ALLEGRO
Abstract Designing CRISPR single guide RNA (sgRNA) libraries targeting entire kingdoms of life will significantly advance genetic research in diverse and underexplored taxa. Current sgRNA design tools are often species-specific and fail to scale to large, phylogenetically diverse datasets, limiting their applicability to comparative genomics, evolutionary studies, and biotechnology. Here, we present ALLEGRO, a combinatorial optimization algorithm able to design minimal, yet highly effective sgRNA libraries targeting thousands of species. Leveraging integer linear programming, ALLEGRO identified compact sgRNA sets simultaneously targeting several genes of interest for over 2,000 species across the fungal kingdom. We experimentally validated the sgRNAs designed by ALLEGRO inKluyveromyces marxianus, Komagataella phaffii, andYarrowia lipolytica. In addition, we adopted a generalized Cas9-Ribonucleoprotein delivery system coupled with protoplast transformation to extend ALLEGRO’s sgRNA libraries to other untested fungal genomes, such asRhodotorula araucariae. Our experimental results, along with cross-validation, show that ALLEGRO enables efficient CRISPR genome editing, supporting the development of universal sgRNA libraries applicable to entire taxonomic groups.  more » « less
Award ID(s):
2400327
PAR ID:
10594337
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,P. patenswas unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patenshave greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Constructing the Cas9/sgRNA transient expression vector Alternate Protocol 1: Shortcut to generating single and pooled Cas9/sgRNA expression vectors Basic Protocol 2: Designing the oligonucleotide‐based homology‐directed repair (HDR) template Alternate Protocol 2: Designing the plasmid‐based HDR template Basic Protocol 3: Inducing genome editing by transforming CRISPR vector intoP. patensprotoplasts Basic Protocol 4: Identifying edited plants. 
    more » « less
  2. Abstract High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeastYarrowia lipolyticaand acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest. 
    more » « less
  3. Abstract We present GuideScan2 for memory-efficient, parallelizable construction of high-specificity CRISPR guide RNA (gRNA) databases and user-friendly design and analysis of individual gRNAs and gRNA libraries for targeting coding and non-coding regions in custom genomes. GuideScan2 analysis identifies widespread confounding effects of low-specificity gRNAs in published CRISPR screens and enables construction of a gRNA library that reduces off-target effects in a gene essentiality screen. GuideScan2 also enables the design and experimental validation of allele-specific gRNAs in a hybrid mouse genome. GuideScan2 will facilitate CRISPR experiments across a wide range of applications. 
    more » « less
  4. Abstract In less than a decade, CRISPR screening has revolutionized forward genetics and cell and molecular biology. Advances in screening technologies, including sgRNA libraries, Cas9‐expressing cell lines, and streamlined sequencing pipelines, have democratized pooled CRISPR screens at genome‐wide scale. Initially, many such screens were survival‐based, identifying essential genes in physiological or perturbed processes. With the application of new chemical biology tools to CRISPR screening, the phenotypic space is no longer limited to live/dead selection or screening for levels of conventional fluorescent protein reporters. Further, the resolution has been increased from cell populations to single cells or even the subcellular level. We highlight advances in pooled CRISPR screening, powered by chemical biology, that have expanded phenotypic space, resolution, scope, and scalability as well as strengthened the CRISPR/Cas enzyme toolkit to enable biological hypothesis generation and discovery. 
    more » « less
  5. Abstract The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing. 
    more » « less