skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Persistent Homology Features for Accurate Defect Formation Energy Predictions via Graph Neural Networks
In machine-learning-assisted high-throughput defect studies, a defect-aware latent representation of the supercell structure is crucial for the accurate prediction of defect properties. The performance of current graph neural network (GNN) models is limited due to the fact that defect properties depend strongly on the local atomic configurations near the defect sites and due to the oversmoothing problem of GNN. Herein, we demonstrate that persistent homology features, which encode the topological information on the local chemical environment around each atomic site, can characterize the structural information on defects. Using the dataset containing a wide spectrum of O-based perovskites with all available vacancies as an example, we show that incorporating the persistent homology features, along with proper choices of graph pooling operations, significantly increases the prediction accuracy, with the MAE reduced by 55%. Those features can be easily integrated into the state-of-the-art GNN models, including the graph Transformer network and the equivariant neural network, and universally improve their performance. Besides, our model also overcomes the convergence issue with respect to the supercell size that was present in previous GNN models. Furthermore, using the datasets of defective BaTiO3 with multiple substitutions and multiple vacancies as examples, our GNN model can also predict the defect–defect interactions accurately. These results suggest that persistent homology features can effectively improve the performance of machine learning models and assist the accelerated discovery of functional defects for technological applications.  more » « less
Award ID(s):
2314050
PAR ID:
10594513
Author(s) / Creator(s):
;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Chemistry of Materials
Volume:
37
Issue:
4
ISSN:
0897-4756
Page Range / eLocation ID:
1531 to 1540
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely employed for the analysis of atomic properties, such as biomolecular flexibility analysis or B-factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B-factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information in complex macromolecules. 
    more » « less
  2. null (Ed.)
    The development of an efficient and powerful machine learning (ML) model for materials property prediction (MPP) remains an important challenge in materials science. While various techniques have been proposed to extract physicochemical features in MPP, graph neural networks (GNN) have also shown very strong capability in capturing effective features for high-performance MPP. Nevertheless, current GNN models do not effectively differentiate the contributions from different atoms. In this paper we develop a novel graph neural network model called GATGNN for predicting properties of inorganic materials. GATGNN is characterized by its composition of augmented graph-attention layers (AGAT) and a global attention layer. The application of AGAT layers and global attention layers respectively learn the local relationship among neighboring atoms and overall contribution of the atoms to the material's property; together making our framework achieve considerably better prediction performance on various tested properties. Through extensive experiments, we show that our method is able to outperform existing state-of-the-art GNN models while it can also provide a measurable insight into the correlation between the atoms and their material property. Our code can found on – https://github.com/superlouis/GATGNN. 
    more » « less
  3. null (Ed.)
    Abstract Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline Tb 0.3 Dy 0.7 Fe 2 alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the importance of each feature in each grain of a microstructure to its magnetostriction. Such a microstructure-graph-based GNN model, therefore, enables an accurate and interpretable prediction of the properties of polycrystalline materials. 
    more » « less
  4. This paper proposes the application of explanation methods to enhance the interpretability of graph neural network (GNN) models in fault location for power grids. GNN models have exhibited remarkable precision in utilizing phasor data from various locations around the grid and integrating the system’s topology, an advantage rarely harnessed by alternative machine learning techniques. This capability makes GNNs highly effective in identifying fault occurrences in power grids. Despite their greater performance, these models can encounter criticism for their “black box” nature, which conceals the reasoning behind their predictions. Lack of transparency significantly hinders power utility operations, as interpretability is crucial to building trust, accountability, and actionable insights. This research presents a comprehensive framework that systematically evaluates state-of-the-art explanation strategies, representing the first use of such a framework for Graph Neural Network models for defect location detection. By assessing the strengths and weaknesses of different explanatory methods, it identifies and recommends the most effective strategies for clarifying the decision-making processes of GNN models. These recommendations aim to improve the transparency of fault predictions, allowing utility providers to better understand and trust the models’ output. The proposed framework not only enhances the practical usability of GNN-based systems but also contributes to advancing their adoption in critical power grid applications. 
    more » « less
  5. Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data. However, GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant. We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates. Given an entity in the graph, CF-GNN produces a prediction set/interval that provably contains the true label with pre-defined coverage probability (e.g. 90%). We establish a permutation invariance condition that enables the validity of CP on graph data and provide an exact characterization of the test-time coverage. Besides valid coverage, it is crucial to reduce the prediction set size/interval length for practical use. We observe a key connection between non-conformity scores and network structures, which motivates us to develop a topology-aware output correction model that learns to update the prediction and produces more efficient prediction sets/intervals. Extensive experiments show that CF-GNN achieves any pre-defined target marginal coverage while significantly reducing the prediction set/interval size by up to 74% over the baselines. It also empirically achieves satisfactory conditional coverage over various raw and network features. 
    more » « less