skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Kasner Bounces and Fluctuating Collapse Inside Hairy Black Holes with Charged Matter
Abstract We study the interior of black holes in the presence of charged scalar hair of small amplitude$$\epsilon $$ ϵ on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in[M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024]in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such asCollapsed oscillations: oscillatory growth of the scalar hair, nonlinearly induced by the collapseAfluctuating collapse: The final Kasner exponents’ dependency in$$\epsilon $$ ϵ is via an expression of the form$$|\sin \left( \omega _0 \cdot \epsilon ^{-2}+ O(\log (\epsilon ^{-1}))\right) |$$ | sin ω 0 · ϵ - 2 + O ( log ( ϵ - 1 ) ) | .AKasner bounce: a transition from an unstable Kasner metric to a different stable Kasner metricThe Kasner bounce occurring in our spacetime is reminiscent of the celebrated BKL scenario in cosmology. We additionally propose a construction indicating the relevance of the above phenomena – including Kasner bounces – to spacelike singularities inside more general (asymptotically flat) black holes, beyond the hairy case. While our result applies to all values of$$\Lambda \in \mathbb {R}$$ Λ R , in the$$\Lambda <0$$ Λ < 0 case, our spacetime corresponds to the interior region of a charged asymptotically Anti-de-Sitter stationary black hole, also known as aholographic superconductorin high-energy physics, and whose exterior region was rigorously constructed in the recent mathematical work [W. Zheng,Asymptotically Anti-de Sitter Spherically Symmetric Hairy Black Holes, arXiv.2410.04758].  more » « less
Award ID(s):
2247376
PAR ID:
10594547
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Annals of PDE
Volume:
11
Issue:
1
ISSN:
2524-5317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ ϵ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ Λ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ϵ = 0 ). For all small$$\epsilon \ne 0$$ ϵ 0 , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ | ϵ | ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ r - O ( ϵ - 2 ) at the singularity$$\{r=0\}$$ { r = 0 } . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ { r = 0 } . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ Λ R , the case$$\Lambda <0$$ Λ < 0 is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes. 
    more » « less
  2. Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:Certifying that a list ofnintegers has no 3-SUM solution can be done in Merlin–Arthur time$$\tilde{O}(n)$$ O ~ ( n ) . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n^{1.5})$$ O ~ ( n 1.5 ) time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ O ~ ( n 1.5 ) and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ O ~ ( n 1.5 ) time).Counting the number ofk-cliques with total edge weight equal to zero in ann-node graph can be done in Merlin–Arthur time$${\tilde{O}}(n^{\lceil k/2\rceil })$$ O ~ ( n k / 2 ) (where$$k\ge 3$$ k 3 ). For oddk, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm-edge graph can be done in Merlin–Arthur time$${\tilde{O}}(m)$$ O ~ ( m ) . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only countk-cliques in unweighted graphs, and had worse running times for smallk.Computing the All-Pairs Shortest Distances matrix for ann-node graph can be done in Merlin–Arthur time$$\tilde{O}(n^2)$$ O ~ ( n 2 ) . Note this is optimal, as the matrix can have$$\Omega (n^2)$$ Ω ( n 2 ) nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\tilde{O}(n^{2.94})$$ O ~ ( n 2.94 ) nondeterministic time algorithm.Certifying that ann-variablek-CNF is unsatisfiable can be done in Merlin–Arthur time$$2^{n/2 - n/O(k)}$$ 2 n / 2 - n / O ( k ) . We also observe an algebrization barrier for the previous$$2^{n/2}\cdot \textrm{poly}(n)$$ 2 n / 2 · poly ( n ) -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$\#$$ # SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol fork-UNSAT running in$$2^{n/2}/n^{\omega (1)}$$ 2 n / 2 / n ω ( 1 ) time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time$$2^{4n/5}\cdot \textrm{poly}(n)$$ 2 4 n / 5 · poly ( n ) . Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{2n/3}\cdot \textrm{poly}(n)$$ 2 2 n / 3 · poly ( n ) time.Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution tonintegers can be done in Merlin–Arthur time$$2^{n/3}\cdot \textrm{poly}(n)$$ 2 n / 3 · poly ( n ) , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{0.49991n}\cdot \textrm{poly}(n)$$ 2 0.49991 n · poly ( n ) time. 
    more » « less
  3. Abstract Given integers$$n> k > 0$$ n > k > 0 , and a set of integers$$L \subset [0, k-1]$$ L [ 0 , k - 1 ] , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ F [ n ] k such that$$|F \cap F'| \in L$$ | F F | L for distinct$$F, F'\in \mathcal {F}$$ F , F F .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ ϑ ( G ) is a semidefinite programming approximation of the independence number$$\alpha $$ α of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ ϑ ( G ( n , k , L ) ) of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ n . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ ϵ > 0 , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / c ( G ) = Ω ( n 1 - ϵ ) , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / α ( G ) = Ω ( n 1 - ϵ ) , which greatly improves on the best known explicit construction. 
    more » « less
  4. Abstract We propose a generic compiler that can convert any zero-knowledge (ZK) proof for SIMD circuits to general circuits efficiently, and an extension that can preserve the space complexity of the proof systems. Our compiler can immediately produce new results improving upon state of the art.By plugging in our compiler to Antman, an interactive sublinear-communication protocol, we improve the overall communication complexity for general circuits from$$\mathcal {O}(C^{3/4})$$ O ( C 3 / 4 ) to$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) . Our implementation shows that for a circuit of size$$2^{27}$$ 2 27 , it achieves up to$$83.6\times $$ 83.6 × improvement on communication compared to the state-of-the-art implementation. Its end-to-end running time is at least$$70\%$$ 70 % faster in a 10Mbps network.Using the recent results on compressed$$\varSigma $$ Σ -protocol theory, we obtain a discrete-log-based constant-round zero-knowledge argument with$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) communication and common random string length, improving over the state of the art that has linear-size common random string and requires heavier computation.We improve the communication of a designatedn-verifier zero-knowledge proof from$$\mathcal {O}(nC/B+n^2B^2)$$ O ( n C / B + n 2 B 2 ) to$$\mathcal {O}(nC/B+n^2)$$ O ( n C / B + n 2 ) .To demonstrate the scalability of our compilers, we were able to extract a commit-and-prove SIMD ZK from Ligero and cast it in our framework. We also give one instantiation derived from LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our methodology. 
    more » « less
  5. Abstract It is natural to generalize the online$$k$$ k -Server problem by allowing each request to specify not only a pointp, but also a subsetSof servers that may serve it. To date, only a few special cases of this problem have been studied. The objective of the work presented in this paper has been to more systematically explore this generalization in the case of uniform and star metrics. For uniform metrics, the problem is equivalent to a generalization of Paging in which each request specifies not only a pagep, but also a subsetSof cache slots, and is satisfied by having a copy ofpin some slot inS. We call this problemSlot-Heterogenous Paging. In realistic settings only certain subsets of cache slots or servers would appear in requests. Therefore we parameterize the problem by specifying a family$${\mathcal {S}}\subseteq 2^{[k]}$$ S 2 [ k ] of requestable slot sets, and we establish bounds on the competitive ratio as a function of the cache sizekand family$${\mathcal {S}}$$ S :If all request sets are allowed ($${\mathcal {S}}=2^{[k]}\setminus \{\emptyset \}$$ S = 2 [ k ] \ { } ), the optimal deterministic and randomized competitive ratios are exponentially worse than for standard Paging ($${\mathcal {S}}=\{[k]\}$$ S = { [ k ] } ).As a function of$$|{\mathcal {S}}|$$ | S | andk, the optimal deterministic ratio is polynomial: at most$$O(k^2|{\mathcal {S}}|)$$ O ( k 2 | S | ) and at least$$\Omega (\sqrt{|{\mathcal {S}}|})$$ Ω ( | S | ) .For any laminar family$${\mathcal {S}}$$ S of heighth, the optimal ratios areO(hk) (deterministic) and$$O(h^2\log k)$$ O ( h 2 log k ) (randomized).The special case of laminar$${\mathcal {S}}$$ S that we callAll-or-One Pagingextends standard Paging by allowing each request to specify a specific slot to put the requested page in. The optimal deterministic ratio forweightedAll-or-One Paging is$$\Theta (k)$$ Θ ( k ) . Offline All-or-One Paging is$$\mathbb{N}\mathbb{P}$$ N P -hard.Some results for the laminar case are shown via a reduction to the generalization of Paging in which each request specifies a set$$P$$ P ofpages, and is satisfied by fetching any page from$$P$$ P into the cache. The optimal ratios for the latter problem (with laminar family of heighth) are at mosthk(deterministic) and$$hH_k$$ h H k (randomized). 
    more » « less