skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 3, 2026

Title: Visualizing Cell Structures with Minecraft
ABSTRACT Many microscopic images and simulations of cells give results in different kinds of formats, making it difficult for people lacking computational skills to visualize and interact with them. Minecraft—known for its three-dimensional, open-world, voxel-based environment—offers a unique solution by allowing the direct insertion of voxel-based cellular structures from light microscopy and simulations into its worlds without modification. This integration enables Minecraft players to explore the ultrastructure of cells in a highly immersive and interactive environment. Here, we demonstrate several workflows that can convert images and simulation results into Minecraft worlds. Using the workflows, students can easily import and interact with a variety of cellular content, including bacteria, yeast, and cancer cells. This approach not only opens new avenues for science education but also demonstrates the potential of combining scientific visualization with interactive gaming platforms for facilitating research and improving appreciation of cellular structure for a broad audience.  more » « less
Award ID(s):
2243257 2221237
PAR ID:
10594580
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Biophysicist
Date Published:
Journal Name:
The Biophysicist
ISSN:
2578-6970
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of What-if Hypothetical Implementations in Minecraft (WHIMC) is to develop computer simulations that engage, excite, and generate interest in science. WHIMC leverages Minecraft as a learning environment for learners to interactively explore the scientific consequences of alternative versions of Earth via “what if?” questions, such as “What if the earth had no moon?” or “What if the earth were twice its current size?” Learners using our mods are invited to make observations and propose scientific explanations for what they see as different. Given ongoing discoveries of potentially habitable worlds throughout the Galaxy, such questions have high relevance to public discourse around space exploration, conditions necessary for life, and the long-term future of the human race. Studies in our project are occurring across three informal learning settings: museum exhibits, after school programs, and summer camps. Our research is driven by the following research questions: 1. What technology-based triggers of interest have the strongest influence on interest? 2. Which contextual factors are most important for supporting long-term interest development? 3. And, what kinds of technology-based triggers are most effective for learners from audiences who are underrepresented in STEM? 
    more » « less
  2. Abstract Interactive visual analysis has many advantages, but an important disadvantage is that analysis processes and workflows cannot be easily stored and reused. This is in contrast to code‐based analysis workflows, which can simply be run on updated datasets, and adapted when necessary. In this paper, we introduce methods to capture workflows in interactive visualization systems for different interactions such as selections, filters, categorizing/grouping, labeling, and aggregation. These workflows can then be applied to updated datasets, making interactive visualization sessions reusable. We demonstrate this specification using an interactive visualization system that tracks interaction provenance, and allows generating workflows from the recorded actions. The system can then be used to compare different versions of datasets and apply workflows to them. Finally, we introduce a Python library that can load workflows and apply it to updated datasets directly in a computational notebook, providing a seamless bridge between computational workflows and interactive visualization tools. 
    more » « less
  3. The organization of cells within tissues plays a vital role in various biological processes, including development and morphogenesis. As a result, understanding how cells self-organize in tissues has been an active area of research. In our study, we explore a mechanistic model of cellular organization that represents cells as force dipoles that interact with each other via the tissue, which we model as an elastic medium. By conducting numerical simulations using this model, we are able to observe organizational features that are consistent with those obtained from vertex model simulations. This approach provides valuable insights into the underlying mechanisms that govern cellular organization within tissues, which can help us better understand the processes involved in development and disease. 
    more » « less
  4. Abstract Robotic systems often struggle to adapt to dynamic, unstructured environments due to top-down design constraints based on human assumptions. Inspired by biological morphogenesis, this study introduces a cellular plasticity model based on Turing patterns, enabling multi-cellular robots to self-organize their cell phenotypes in response to environmental stimuli. The model leverages reaction-diffusion dynamics to capture key cellular plasticity phenomena observed in muscle cells, neurons, and stem cells. Analytical analysis explores equilibrium points, stability, and conditions for emergent Turing patterns, while simulations examine parametric influences on system behavior. Physical experiments with the Loopy platform demonstrate that its cells dynamically self-organize mechanical properties in response to behavioral and environmental demands. This response enables Loopy to achieve similar performance to empirically optimized static parameters in obstacle-free environments and outperform the static configuration in an environment with limited space. This work advances morphogenetic robotics, presenting a scalable framework for decentralized, dynamic adaptation in unmodeled environments. 
    more » « less
  5. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Extensive research underscores the importance of stimulating students' interest in learning, as it can improve key educational outcomes such as self-regulation, collaboration, problem-solving, and overall enjoyment. Yet, the mechanisms through which interest manifests and impacts learning remain less explored, particularly in open-ended game-based learning environments like Minecraft. The unstructured nature of gameplay data in such settings poses analytical challenges. This study employed advanced data mining techniques, including changepoint detection and clustering, to extract meaningful patterns from students' movement data. Changepoint detection allows us to pinpoint significant shifts in behavior and segment unstructured gameplay data into distinct phases characterized by unique movement patterns. This research goes beyond traditional session-level analysis, offering a dynamic view of the learning process as it captures changes in student behaviors while they navigate challenges and interact with the environment. Three distinct exploration patterns emerged: surface-level exploration, in-depth exploration, and dynamic exploration. Notably, we found a negative correlation between surface-level exploration and interest development, whereas dynamic exploration positively correlated with interest development, regardless of initial interest levels. In addition to providing insights into how interest can manifest in Minecraft gameplay behavior, this paper makes significant methodological contributions by showcasing innovative approaches for extracting meaningful patterns from unstructured behavioral data within game-based learning environments. The implications of our research extend beyond Minecraft, offering valuable insights into the applications of changepoint detection in educational research to investigate student behavior in open-ended and complex learning settings. 
    more » « less