Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant of the thin film was 4.110 ± 0.001 Å. An average maximum recoverable energy storage density, 88 ± 17 J cm−3 with an efficiency of 85% ± 6% at 1 kHz and 80 ± 15 J cm−3 with an efficiency of 91% ± 4% at 10 kHz, was achieved at room temperature. The capacitor was fatigue resistant up to 106 cycles at an applied electric field of 2 MV cm−1. These properties are linked to a low level of hysteresis and slow polarization saturation. PbZrO3-derived oxide thin film capacitors are promising for high efficiency and low loss dielectric energy storage applications.
more »
« less
Frequency- and temperature-dependent dielectric response in hybrid molecular beam epitaxy-grown BaSnO3 films
We report on the dielectric response of epitaxial BaSnO3 films grown on Nb-doped SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach. Metal-insulator-metal capacitors were fabricated to obtain frequency- and temperature-dependent dielectric constant and loss. Irrespective of film thickness and cation stoichiometry, the dielectric constant obtained from Ba1−xSn1−yO3 films remained largely unchanged at 15-17 and was independent of frequency and temperature. A loss tangent of ∼1 × 10−3 at 1 kHz < f < 100 kHz was obtained for stoichiometric films, which increased significantly with non-stoichiometry. Using density functional theory calculations, these results are discussed in the context of point defect complexes that can form during film synthesis.
more »
« less
- Award ID(s):
- 1741801
- PAR ID:
- 10594664
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 6
- Issue:
- 6
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The (SmxGa1−x)2O3 alloy system is a potential new dielectric for compound semiconductors such as GaAs. Using molecular beam epitaxy under metal-modulated growth conditions, we grew the binary oxide, Sm2O3, at two substrate temperatures (100 and 500 °C) and optimized the structural, morphological, and electrical properties of the films. Decreasing the Sm cell temperature suppressed the formation of the monoclinic phase and promoted the growth of the cubic phase. Next, the ternary oxide, (SmxGa1−x)2O3, was deposited to investigate the effects of Ga incorporation. Optimization experiments were used to determine the effects of substrate temperature and samarium cell temperature (i.e., growth rate) on film stoichiometry, phase distribution, and microstructure in these films. Films grown at 500 °C showed significant surface roughness and the presence of multiple crystalline phases. Since all of the Sm-based oxides (i.e., samarium oxide with and without gallium) were found to have unbonded Sm metal, annealing experiments were carried out in oxygen and forming gas to determine the effects of annealing on film stoichiometry. The motivation behind annealing in forming gas was to see whether this commonly used technique for reducing interface densities could improve the film quality. GaAs metal-oxide-semiconductor diodes with (SmxGa1−x)2O3 showed breakdown fields at 1 mA/cm2 of 4.35 MV/cm, which decreased with increasing Sm unbonded metal content in the films.more » « less
-
Abstract This study reports a pulsed laser deposition-assisted synthesis of highly metallic titanium nitride (TiN) and a series of semiconducting titanium oxynitride (TiNxOy) compounds in thin film form with tunable plasmonic properties by carefully altering the nitrogen (N)-oxygen (O) ratio. The N/O ratio was controlled from 0.3 (highest oxygen doping of TiN) to ~ 1.0 (no oxygen doping of TiN) by growing the TiN films under nitrogen pressures of 50, 35, and 10 mTorr and high vacuum conditions of 2 × 10−6 Torr with no external gas introduced. The presence of nitrogen in the deposition chamber during the film growth affects the gas phase oxidation of TiN to TiNxOyby increasing the mean free path-dependent N and O inter-collisions per second by two to three orders of magnitudes. The evidence of increased oxidation of TiN to TiNxOywith an increase in nitrogen deposition pressure was obtained using X-ray photoelectron spectroscopy analysis. While the TiN samples deposited in high vacuum conditions had the highest reflectance, TiNxOythin films were also found to possess high reflectance at low frequency with a well-defined edge around 20,000 cm−1. Furthermore, the vacuum-deposited TiN samples showed a large negative dielectric constant of -330 and the largest frequency of zero-crossing at 25,000 cm−1; the TiNxOysamples deposited in the presence of nitrogen ambient also showed promising plasmonic applications at the near-mid infrared range. A comparison of the dielectric constant and loss function data of this research with the literature values for noble metals seems to indicate that TiN and TiNxOyhave the potential to replace gold and silver in the visible and near-infrared spectral regions.more » « less
-
A series of different high κ dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 °C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high κ layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I–V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C–V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high κ dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy.more » « less
-
Glassy films of methyl-m-toluate have been vapor deposited onto a substrate equipped with interdigitated electrodes, facilitating in situ dielectric relaxation measurements during and after deposition. Samples of 200 nm thickness have been deposited at rates of 0.1 nm/s at a variety of deposition temperatures between 40 K and Tg = 170 K. With increasing depth below the surface, the dielectric loss changes gradually from a value reflecting a mobile surface layer to that of the kinetically stable glass. The thickness of this more mobile layer varies from below 1 to beyond 10 nm as the deposition temperature is increased, and its average fictive temperature is near Tg for all deposition temperatures. Judged by the dielectric loss, the liquid-like portion of the surface layer exceeds a thickness of 1 nm only for deposition temperatures above 0.8Tg, where near-equilibrium glassy states are obtained. After deposition, the dielectric loss of the material positioned about 5–30 nm below the surface decreases for thousands of seconds of annealing time, whereas the bulk of the film remains unchanged.more » « less
An official website of the United States government
