skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Spatiotemporal patterns of accumulation and surface roughness in interior Greenland with a GNSS-IR network
Abstract. The dry-snow zone is the largest region of the Greenland Ice Sheet, yet temporally and spatially dense observations of surface accumulation and surface roughness in this area are lacking. We use the global navigation satellite system interferometric reflectometry (GNSS-IR) technique with a novel, low-cost GNSS network of 12 stations in the vicinity of the ice sheet summit to reveal temporal and spatial patterns of accumulation of the upper snow layer. We show that individual measurements are highly precise (±2.8 cm), while the aggregate of hundreds of daily measurements across a large spatial footprint can detect millimeter-level surface changes and is biased by -2.7±3.0 cm compared to a unique validation data set that covers a similar spatial extent to the instrument sensing footprint. Using the validation data set, we find that the reflectometry technique is most sensitive to the surrounding 4–20 m of the surface, with the GNSS antenna at a height of 1–2 m above ground level. Along with an exceptionally high accumulation rate at the beginning of the study, we also detect an across-slope dependence in accumulation rates at yearly timescales. For the first time, we also validate GNSS-IR sensitivity to meter-scale surface heterogeneities such as sastrugi, and we construct a time series of surface roughness evolution that suggests a seasonal pattern of heightened wintertime roughness features in this region. These surface accumulation and roughness measurements provide a novel data set for these critical variables and show a statistically significant relationship with occurrences of both high winds and precipitation events but only moderate correlations, suggesting that other processes may also contribute to accumulation and enhanced surface roughness in the interior region of Greenland.  more » « less
Award ID(s):
2028421
PAR ID:
10594783
Author(s) / Creator(s):
; ;
Publisher / Repository:
Copernicus on behalf of EGU
Date Published:
Journal Name:
The Cryosphere
Volume:
19
Issue:
3
ISSN:
1994-0424
Page Range / eLocation ID:
1013 to 1029
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Climate change is extensively affecting ice sheets resulting in accelerating mass loss in recent decades. Assessment of this reduction and its causes is required to project future ice mass loss. Annual snow accumulation is an important component of the surface mass balance of ice sheets. While in situ snow accumulation measurements are temporally and spatially limited due to their high cost, airborne radar sounders can achieve ice sheet wide coverage by capturing and tracking annual snow layers in the radar images or echograms. In this paper, we use deep learning to uniquely identify the position of each annual snow layer in the Snow Radar echograms taken across different regions over the Greenland ice sheet. We train with more than 15,000 images generated from radar echograms and estimate the thickness of each snow layer within a mean absolute error of 0.54 to 7.28 pixels, depending on dataset. A highly precise snow layer thickness can help improve weather models and, thus, support glaciological studies. Such a well-trained deep learning model can be used with ever-growing datasets to aid in the accurate assessment of snow accumulation on the dynamically changing ice sheets. 
    more » « less
  2. Abstract The conductive heat flux through the snow and ice is a critical component of the mass and energy budgets in the Arctic sea ice system. We use high horizontal resolution (3–15 cm) measurements of snow topography to explore the impacts of sub-meter-scale snow surface roughness on heat flux as simulated by the Finite Element method. Simulating horizontal heat flux in a variable snow cover modestly increases the total simulated heat flux. With horizontal heat flux, as opposed to simple 1D-vertical heat flux modeling, the simulated heat flux is 10% greater than that for uniform snow with the same mean snow thickness for a 31.5 × 21 m region of sea ice (the largest region we studied). Vertical-only (1D) heat flux simulates just a 6% increase for the same region. However, this is highly dependent on observation resolution. Had we measured the snow cover at 1 m horizontal spacing or greater, simulating horizontal heat flux would not have changed the net heat flux from that simulated with vertical-only heat flux. These findings suggest that measuring and modeling snow roughness at sub-meter horizontal scales may be necessary to accurately represent horizontal heat flux on level Arctic sea ice. 
    more » « less
  3. Abstract Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Usingin-situmeasurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements. 
    more » « less
  4. Modèle Atmosphérique Régional (MAR) is a regional climate model that is fully coupled to a one-dimensional surface-atmosphere energy and mass transfer scheme, SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer) (Fettweis et al., 2005, 2020; Lefebre et al., 2005). SISVAT employs a multilayered snowpack model, CROCUS, that simulates meltwater production, percolation, and refreeze (Brun et al., 1989), while also accounting for changes in albedo due to snow metamorphism (Brun et al., 1992). MAR has been extensively verified over the Greenland Ice Sheet and is therefore particularly well suited for analyses of Greenland ice sheet surface mass balance (Fettweis et al., 2011; Fettweis et al., 2020; Lefebre et al. 2005; Mattingly et al. 2020). Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C. (1989). An energy and mass model of snow cover suitable for operational avalanche forecasting. Journal of Glaciology, 35, 333. https://doi.org/10.1017/S0022143000009254 Brun, E., David, P., Sudul, M., and Brunot, G. (1992). A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. Journal of Glaciology, 38(128), 13–22. https://doi.org/10.3189/S0022143000009552 Fettweis, X., Gallée, H., Lefebre, F., and van Ypersele, J.-P. (2005). Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991. Climate Dynamics, 24(6), 623–640. https://doi.org/10.1007/s00382-005-0010-y Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J. (2011). Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere, 5(2), 359–375. https://doi.org/10.5194/tc-5-359-2011 Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T., Berends, C. J., et al. (2020). GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14(11), 3935–3958. https://doi.org/10.5194/tc-14-3935-2020 Lefebre, F., Fettweis, X., Gallée, H., Van Ypersele, J.-P., Marbaix, P., Greuell, W., and Calanca, P. (2005). Evaluation of a high-resolution regional climate simulation over Greenland. Climate Dynamics, 25(1), 99–116. https://doi.org/10.1007/s00382-005-0005-8 Mattingly, K. S., Mote, T. L., Fettweis, X., van As, D., Van Tricht, K., Lhermitte, S., et al. (2020). Strong summer atmospheric rivers trigger Greenland ice sheet melt through spatially varying surface energy balance and cloud regimes. Journal of Climate, 33(16), 6809–6832. https://doi.org/10.1175/JCLI-D-19-0835.1 
    more » « less
  5. Abstract. The Greenland Ice Sheet (GrIS) rapid mass loss is primarily driven by an increase in meltwater runoff, which highlights the importance of understanding the formation, evolution, and impact of meltwater features on the ice sheet. Buried lakes are meltwater features that contain liquid water and exist under layers of snow, firn, and/or ice. These lakes are invisible in optical imagery, challenging the analysis of their evolution and implication for larger GrIS dynamics and mass change. Here, we present a method that uses a convolutional neural network, a deep learning method, to automatically detect buried lakes across the GrIS. For the years 2018 and 2019 (which represent low- and high-melt years, respectively), we compare total areal extent of both buried and surface lakes across six regions, and we use a regional climate model to explain the spatial and temporal differences. We find that the total buried lake extent after the 2019 melt season is 56 % larger than after the 2018 melt season across the entire ice sheet. Northern Greenland has the largest increase in buried lake extent after the 2019 melt season, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that different processes are responsible for buried lake formation in different regions of the ice sheet. For example, in southwest Greenland, buried lakes often appear on the surface during the previous melt season, indicating that these meltwater features form when surface lakes partially freeze and become insulated as snowfall buries them. Conversely, in southeast Greenland, most buried lakes never appear on the surface, indicating that these features may form due to downward percolation of meltwater and/or subsurface penetration of shortwave radiation. We provide support for these processes via the use of a physics-based snow model. This study provides additional perspective on the potential role of meltwater on GrIS dynamics and mass loss. 
    more » « less