skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 14, 2026

Title: High-throughput single-cell transcriptomics data informs mechanisms underlying cell-to-cell differences in stress responses
Abstract Over recent decades, studies of cell-to-cell heterogeneity have shown that meaningful variation in stress responses is an evolved trait, exemplified by bet hedging. Here, we expand upon this work by using a high-throughput single-cell transcriptomics approach inS. cerevisiaeto study cell-to-cell variation in stress responses. We measured individual transcriptional profiles of over ten thousand cells subjected to two types of stress: protein misfolding (an intrinsic stress) and nutrient deprivation (an extrinsic stress). Doing so, we saw substantial heterogeneity in responses to stress across and within different conditions. A previously defined canonical stress response is elevated in all stressful conditions, making it useful as a barometer of stress. However, it does not include the majority of the genes that are the most upregulated in response to any of the stresses we study, suggesting stress responses vary across environments. On the other hand, the genes that were downregulated with stress show a much stronger overlap across conditions. Even more striking is the cell-to-cell heterogeneity we observed in stress responses where some stressed cells exhibit neither a canonical stress response nor a transcriptional response that matches most other cells in the same vessel. Further investigation of these cell-to-cell differences revealed a misconception of population-averaged data: While transposable elements (TEs) and chaperones both appear positively correlated with stress at the population level, single-cell analysis revealed they are actually anticorrelated. In other words, some stressed cells upregulate TEs, while others upregulate chaperones. One possible mechanism for this involves chaperones, such as Hsp90, which are thought to help to silence TEs but are unable to do so effectively when these chaperones become overwhelmed during stress. In sum, we have used a powerful single-cell transcriptomics approach to quantify stress-response heterogeneity and to shed light on the mechanisms underlying cell-to-cell variation in stress responses, both of which are crucial for understanding cell evolution and disease.  more » « less
Award ID(s):
2119963
PAR ID:
10594793
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The transcriptional plasticity of cancer cells promotes intercellular heterogeneity in response to anticancer drugs and facilitates the generation of subpopulation surviving cells. Characterizing single-cell transcriptional heterogeneity after drug treatments can provide mechanistic insights into drug efficacy. Here, we used single-cell RNA-seq to examine transcriptomic profiles of cancer cells treated with paclitaxel, celecoxib and the combination of the two drugs. By normalizing the expression of endogenous genes to spike-in molecules, we found that cellular mRNA abundance shows dynamic regulation after drug treatment. Using a random forest model, we identified gene signatures classifying single cells into three states: transcriptional repression, amplification and control-like. Treatment with paclitaxel or celecoxib alone generally repressed gene transcription across single cells. Interestingly, the drug combination resulted in transcriptional amplification and hyperactivation of mitochondrial oxidative phosphorylation pathway linking to enhanced cell killing efficiency. Finally, we identified a regulatory module enriched with metabolism and inflammation-related genes activated in a subpopulation of paclitaxel-treated cells, the expression of which predicted paclitaxel efficacy across cancer cell lines and in vivo patient samples. Our study highlights the dynamic global transcriptional activity driving single-cell heterogeneity during drug response and emphasizes the importance of adding spike-in molecules to study gene expression regulation using single-cell RNA-seq. 
    more » « less
  2. Single-cell measurements routinely demonstrate high levels of variation between cells, but fewer studies provide insight into the analytical and biological sources of this variation. This is particularly true of chemical cytometry, in which individual cells are lysed and their contents separated, compared to more established single-cell measurements of the genome and transcriptome. To characterize population level variation and its sources, we analyzed oxidative stress levels in 1278 individual Dictyostelium discoideum cells as a function of exogenous stress level and cell cycle position. Cells were exposed to varying levels of oxidative stress via singlet oxygen generation using the photosensitizer Rose Bengal. Single-cell data reproduced the dose-response observed in ensemble measurements by CE-LIF, superimposed with high levels of heterogeneity. Through experiments and data analysis, we explored possible biological sources of this heterogeneity. No trend was observed between population variation and oxidative stress level, but cell cycle position was a major contributor to heterogeneity in oxidative stress. Cells synchronized to the same stage of cell division were less heterogeneous than unsynchronized cells (RSD of 37-51% vs 93%), and mitotic cells had higher levels of reactive oxygen species than interphase cells. While past research has proposed changes in cell size during the cell cycle as a source of biological noise, the measurements presented here use an internal standard to normalize for effects of cell volume, suggesting that a more complex contribution of cell cycle in heterogeneity of oxidative stress. 
    more » « less
  3. ABSTRACT Across species and environments, the ribosome content of cell populations correlates with population growth rate. The robustness and universality of this correlation have led to its classification as a “growth law.” This law has fueled theories about how evolution selects for microbial organisms that maximize their growth rate based on nutrient availability, and it has informed models about how individual cells regulate their growth rates and ribosomal content. However, due to methodological limitations, this growth law has rarely been studied at the level of individual cells. Whilepopulationsof fast-growing cells tend to have more ribosomes thanpopulationsof slow-growing cells, it is unclear whether individual cells tightly regulate their ribosome content to match their environment. Here, we employ recent groundbreaking single-cell RNA sequencing techniques to study this growth law at the single-cell level in two different microbes,S. cerevisiae(a single-celled yeast and eukaryote) andB. subtilis(a bacterium and prokaryote). In both species, we observe significant variation in the ribosomal content of single cells that is not predictive of growth rate. Fast-growing populations include cells exhibiting transcriptional signatures of slow growth and stress, as do cells with the highest ribosome content we survey. Broadening our focus to non-ribosomal transcripts reveals subpopulations of cells in unique transcriptional states suggestive that they have evolved to do things other than maximize their rate of growth. Overall, these results indicate that single-cell ribosome levels are not finely tuned to match population growth rates or nutrient availability and cannot be predicted by a Gaussian process model that assumes measurements are sampled from a normal distribution centered on the population average. This work encourages the expansion of growth law and other models that predict how growth rates are regulated or how they evolve to consider single-cell heterogeneity. To this end, we provide extensive data and analysis of ribosomal and transcriptomic variation across thousands of single cells from multiple conditions, replicates, and species. 
    more » « less
  4. Single-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+dynamics in single cells. We propose to share information between cells via transfer learning: for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+signalling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity: parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signalling dynamics in single cells. 
    more » « less
  5. null (Ed.)
    Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts. 
    more » « less