skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on April 11, 2026

Title: Constraining Gas Phase Yields and Reactive Uptake Coefficients of Oxidation Products from the Hydroxyl Radical-Isoprene Reaction onto Acidic Particles by Vocus Ammonia-Adduct Chemical Ionization Mass Spectrometry (Vocus NH 4 + CIMS)
ABSTRACT: Isoprene, the most abundant nonmethane volatile organic compound in the atmosphere, undergoes photochemical reactions with hydroxyl radical (•OH), a major sink for isoprene, leading to the formation of secondary organic aerosol (SOA). Using a Vocus Chemical Ionization Mass Spectrometer with ammonium-adduct ions (Vocus NH4+ CIMS), this study used the positive ion mode to quantify the yields and time-dependent reactiveuptake of oxidized volatile organic compounds (OVOCs) produced from •OH-initiated oxidation of isoprene under dry conditions. Molar gas-phase yields of key oxidation products were constrained using sensitivities derived from a voltage scan of the front and back end of the Vocus ion−molecule reactor region. Carefully designed chamber experiments measured uptake coefficients (γ) for key isoprene-derived oxidation products onto acidic sulfate particles. The γ values for both C5H10O3 isomers (IEPOX/ISOPOOH) and C5H8O4, another epoxy species from isoprene photo-oxidation, rapidly decreased as the SOA coating thickness increased, demonstrating a self-limiting effect. Despite ISOPOOH/IEPOX contributing around 80% to total reactive uptake, other oxidation products from isoprene photooxidation were estimated to contribute 20% of the total SOA formation. These findings highlight the importance for future models to consider the self-limiting effects of ISOPOOH/IEPOX and SOA formation through non-IEPOX pathways.  more » « less
Award ID(s):
2304669
PAR ID:
10594817
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
ACS ES&T Air
Volume:
2
Issue:
4
ISSN:
2837-1402
Page Range / eLocation ID:
665 to 676
Subject(s) / Keyword(s):
Isoprene Photooxidation Vocus NH4 + Chemical Ionization Mass Spectrometry Yields Reactive Uptake Secondary Organic Aerosol
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxidation of isoprene, the biogenic volatile organic compound with the highest emissions globally, is a large source of secondary organic aerosol (SOA) in the atmosphere. Organosulfates, particularly methyltetrol sulfates formed from acid-driven reactions of the oxidation product isoprene epoxydiol (IEPOX) onto particulate sulfate, are important contributors to SOA mass. To date, most studies have focused on organosulfate formation on ammonium sulfate particles at low pH. However, recent work has shown that sea spray aerosol (SSA) in the accumulation mode (~100 nm) is often quite acidic (pH ~ 2). Marine biota are well-established sources of isoprene, with annual global oceanic fluxes of isoprene estimated to range from 1-12 Tg, and IEPOX-derived organosulfates have been identified in marine environments. Herein, we demonstrate that substantial SOA, including organosulfates, are formed on acidic sodium sulfate particles, representative of marine aerosol heterogeneously reacting with H2SO4 to form Na2SO4. We compare SOA formed from the reactive uptake of IEPOX onto particulate sulfate and find that the cation (sodium vs. ammonium) impacts the physical properties and chemical composition of the SOA formed. Additionally, we investigate the formation of SOA derived from sodium sulfate based on key properties including particle acidity and the extent of exposure to oxidation via OH radicals. Our results suggest that isoprene-derived SOA formed on aged SSA is potentially an important, but underappreciated, source of SOA and organosulfates in marine and coastal regions and could modify SOA budgets and composition in these environments. 
    more » « less
  2. Abstract We recently demonstrated that the heterogeneous hydroxyl radical (·OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with ·OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous ·OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous ·OH oxidation of IEPOX-SOA particles. Gas-phase IEPOX was reacted with inorganic sulfate particles of varying pH (0.5 to 2.0) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were then aged at a relative humidity of 60% in an oxidation flow reactor (OFR) for 0-15 days of equivalent atmospheric ·OH exposure. Aged IEPOX-SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) to measure real-time aerosol mass and chemical changes of the SOA particles, and were also collected onto Teflon filters and into PILS vials for molecular-level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), ion chromatography, and total OS mass amounts. 
    more » « less
  3. Abstract. Isoprene has the largest global non-methane hydrocarbon emission, and the oxidation of isoprene plays a crucial role in the formation of secondary organic aerosol (SOA). Two primary processes are known to contribute to SOA formation from isoprene oxidation: (1) the reactive uptake of isoprene-derived epoxides on acidic or aqueous particle surfaces and (2) the absorptive gas–particle partitioning of low-volatility oxidation products. In this study, we developed a new multiphase condensed isoprene oxidation mechanism that includes these processes with key molecular intermediates and products. The new mechanism was applied to simulate isoprene gas-phase oxidation products and SOA formation from previously published chamber experiments under a variety of conditions and atmospheric observations during the Southern Oxidant and Aerosol Studies (SOAS) field campaign. Our results show that SOA formation from most of the chamber experiments is reasonably reproduced using our mechanism, except when the concentration ratios of initial nitric oxide to isoprene exceed ∼ 2, the formed SOA is significantly underpredicted. The SOAS simulations also reasonably agree with the measurements regarding the diurnal pattern and concentrations of different product categories, while the total isoprene SOA remains underestimated. The molecular compositions of the modeled SOA indicate that multifunctional low-volatility products contribute to isoprene SOA more significantly than previously thought, with a median mass contribution of ∼ 57 % to the total modeled isoprene SOA. However, this contribution is intricately intertwined with IEPOX-derived SOA (IEPOX: isoprene-derived epoxydiols), posing challenges for their differentiation using bulk aerosol composition analysis (e.g., the aerosol mass spectrometer with positive matrix factorization). Furthermore, the SOA from these pathways may vary greatly, mainly dependent on the volatility estimation and treatment of particle-phase processes (i.e., photolysis and hydrolysis). Our findings emphasize that the various pathways to produce these low-volatility species should be considered in models to more accurately predict isoprene SOA formation. The new condensed isoprene chemical mechanism can be further incorporated into regional-scale air quality models, such as the Community Multiscale Air Quality Modelling System (CMAQ), to assess isoprene SOA formation on a larger scale. 
    more » « less
  4. ABSTRACT: At fixed aerosol acidity, we recently demonstrated that dimers in isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) can heterogeneously react with hydroxyl radical (·OH) at faster rates than monomers. Aerosol acidity influences this aging process by enhancing the formation of oligomers in freshly generated IEPOX-SOA. Therefore, we systematically examined the role of aerosol acidity on kinetics and products resulting from heterogeneous ·OH oxidation of freshly generated IEPOX-SOA. IEPOX reacted with inorganic sulfate aerosol of varying initial pH (0.5, 1.5, and 2.5) in a steady state smog chamber to yield a constant source of freshly generated IEPOX-SOA, which was aged in an oxidation flow reactor for 0−22 equiv days of atmospheric ·OH exposure. Molecular-level chemical analyses revealed that the most acidic sulfate aerosol (pH 0.5) formed the largest oligomeric mass fraction, causing the slowest IEPOX-SOA mass decay with aging. Reactive uptake coefficients of ·OH (γOH) were 0.24 ± 0.06, 0.40 ± 0.05, and 0.49 ± 0.20 for IEPOX-SOA generated at pH 0.5, 1.5, and 2.5, respectively. IEPOXSOA became more liquid-like for pH 1.5 and 2.5, while exhibiting an irregular pattern for pH 0.5 with aging. Using kinetic and physicochemical data derived for a single aerosol pH in atmospheric models could inaccurately predict the fate of the IEPOX-SOA. 
    more » « less
  5. In isoprene‐rich regions, acid‐catalyzed multiphase reactions of isoprene epoxydiols (IEPOX) with inorganic sulfate (Sulfinorg) particles form secondary organic aerosol (IEPOX‐SOA), extensively converting Sulfinorg to lowervolatility particulate organosulfates (OSs), including 2‐ methyltetrol sulfates (2‐MTSs) and their dimers. Recently, we showed that heterogeneous hydroxyl radical (OH) oxidation of particulate 2‐MTSs generated multifunctional OS products. However, atmospheric models assume that OS‐rich IEPOX‐SOA particles remain unreactive towards heterogeneous OH oxidation, and limited laboratory studies have been conducted to examine the heterogeneous OH oxidation kinetics of full IEPOX‐SOA mixtures. Hence, this study investigated the kinetics and products resulting from heterogeneous OH oxidation of freshly‐generated IEPOXSOA in order to help derive model‐ready parameterizations. First, gas‐phase IEPOX was reacted with acidic Sulfinorg particles under dark conditions in order to form fresh IEPOX‐SOA particles. These particles were then subsequently aged at RH of 56% in an oxidation flow reactor at OH exposures ranging from 0~15 days of equivalent atmospheric exposure. Aged IEPOX‐SOA particles were sampled by an online aerosol chemical speciation monitor (ACSM) and collected onto Teflon filters for off‐line molecular‐level chemical analyses by hydrophilic liquid interaction chromatography method interfaced to electrospray ionization high‐resolution quadrupole time‐offlight mass spectrometry (HILIC/ESI‐HR‐QTOFMS). Our results show that heterogeneous OH oxidation only caused a 7% decay of IEPOX‐SOA by 10 days exposure, likely owing to the inhibition of reactive uptake of OH as fresh IEPOXSOA particles have an inorganic core‐organic shell morphology. A significantly higher fraction of IEPOX‐SOA (~37%) decayed by 15 days exposure, likely due to the increasing reactive uptake of OH as IEPOX‐SOA become more liquid‐like with aging. Freshly‐generated IEPOX‐SOA constituents exhibited varying degrees of aging with 2‐MTSdimers being the most reactive, followed by 2‐MTSs and 2‐ methyltetrols (2‐MTs), respectively. Notably, extensive amounts of previously characterized particle‐phase products in ambient fine aerosols were detected in our laboratory‐aged IEPOX‐SOA samples. 
    more » « less