Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras.
more »
« less
This content will become publicly available on April 1, 2026
Internal Sequential Commutation and Single Generation
Abstract We extract a precise internal description of the sequential commutation equivalence relation introduced in [14] for tracial von Neumann algebras. As an application we, prove that if a tracial von Neumann algebra $$N$$ is generated by unitaries $$\{u_{i}\}_{i\in \mathbb{N}}$$ such that $$u_{i}\sim u_{j}$$ (i.e., there exists a finite set of Haar unitaries $$\{w_{i}\}_{i=1}^{n}$$ in $$N^{\mathcal{U}}$$ such that $$[u_{i}, w_{1}]= [w_{k}, w_{k+1}]=[w_{n},u_{j}]=0$$ for all $$1\leq k< n$$), then $$N$$ is singly generated. This generalizes and recovers several known single generation phenomena for II$$_{1}$$ factors in the literature with a unified proof.
more »
« less
- Award ID(s):
- 2350049
- PAR ID:
- 10595208
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2025
- Issue:
- 8
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the relationship between the dynamics of the action $$\alpha$$ of a discrete group $$G$$ on a von Neumann algebra $$M$$, and structural properties of the associated crossed product inclusion $$L(G) \subseteq M \rtimes_\alpha G$$, and its intermediate subalgebras. This continues a thread of research originating in classical structural results for ergodic actions of discrete, abelian groups on probability spaces. A key tool in the setting of a noncommutative dynamical system is the set of quasinormalizers for an inclusion of von Neumann algebras. We show that the von Neumann algebra generated by the quasinormalizers captures analytical properties of the inclusion $$L(G) \subseteq M \rtimes_\alpha G$$ such as the Haagerup Approximation Property, and is essential to capturing ``almost periodic" behavior in the underlying dynamical system. Our von Neumann algebraic point of view yields a new description of the Furstenberg-Zimmer distal tower for an ergodic action on a probability space, and we establish new versions of the Furstenberg-Zimmer structure theorem for general, tracial $W^*$-dynamical systems. We present a number of examples contrasting the noncommutative and classical settings which also build on previous work concerning singular inclusions of finite von Neumann algebras.more » « less
-
The Connes embedding problem (CEP) is a problem in the theory of tracial von Neumann algebras and asks whether or not every tracial von Neumann algebra embeds into an ultrapower of the hyperfinite II 1 _1 factor. The CEP has had interactions with a wide variety of areas of mathematics, including C ∗ \mathrm {C}^* -algebra theory, geometric group theory, free probability, and noncommutative real algebraic geometry, to name a few. After remaining open for over 40 years, a negative solution was recently obtained as a corollary of a landmark result in quantum complexity theory known as MIP ∗ = RE \operatorname {MIP}^*=\operatorname {RE} . In these notes, we introduce all of the background material necessary to understand the proof of the negative solution of the CEP from MIP ∗ = RE \operatorname {MIP}^*=\operatorname {RE} . In fact, we outline two such proofs, one following the “traditional” route that goes via Kirchberg’s QWEP problem in C ∗ \mathrm {C}^* -algebra theory and Tsirelson’s problem in quantum information theory and a second that uses basic ideas from logic.more » « less
-
Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states.more » « less
-
We establish a tantalizing symmetry of certain numbers refining the Narayana numbers. In terms of Dyck paths, this symmetry is interpreted in the following way: if $$w_{n,k,m}$$ is the number of Dyck paths of semilength $$n$$ with $$k$$ occurrences of $UD$ and $$m$$ occurrences of $UUD$, then $$w_{2k+1,k,m}=w_{2k+1,k,k+1-m}$$. We give a combinatorial proof of this fact, relying on the cycle lemma, and showing that the numbers $$w_{2k+1,k,m}$$ are multiples of the Narayana numbers. We prove a more general fact establishing a relationship between the numbers $$w_{n,k,m}$$ and a family of generalized Narayana numbers due to Callan. A closed-form expression for the even more general numbers $$w_{n,k_{1},k_{2},\ldots, k_{r}}$$ counting the semilength-$$n$$ Dyck paths with $$k_{1}$$ $UD$-factors, $$k_{2}$$ $UUD$-factors, $$\ldots$$, and $$k_{r}$$ $$U^{r}D$$-factors is also obtained, as well as a more general form of the discussed symmetry for these numbers in the case when all rise runs are of certain minimal length. Finally, we investigate properties of the polynomials $$W_{n,k}(t)= \sum_{m=0}^k w_{n,k,m} t^m$$, including real-rootedness, $$\gamma$$-positivity, and a symmetric decomposition.more » « less
An official website of the United States government
