skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: FORE: A Student-Centered Framework for Accessible Robotics Education through Simulation and Interactive Learning
Robotics education is often constrained by the high cost and limited accessibility of physical robots, which can hinder the learning experience for many students. To address this challenge, the Fundamentals of Robotics Education (FORE) project, part of a larger NSF-funded collaborative work, was developed to create an accessible and comprehensive online learning platform. FORE provides a student-centered approach to robotics education, featuring a robust code editor, real-time simulation, and interactive lessons. This paper presents the architecture and implementation of the FORE platform, highlighting its key components, including the backend simulation using Gazebo and ROS2, a frontend visualizer built with Three.js, and the integration of a Python-based coding environment. We discuss the development process, the contributions of the student team, and the challenges encountered during the project. The results demonstrate the platform’s effectiveness in making robotics education more easily available. These findings originate from software testing and utilization by senior computer science students, as well as feedback from participants at the University of Nevada, Reno College of Engineering’s annual Capstone Course Innovation Day. The platform allows students to gain hands-on experience without the need for physical hardware. Its adaptability enables it to serve a broad audience of undergraduate students, offering an encompassing and accessible solution for modern robotics education.  more » « less
Award ID(s):
2142360
PAR ID:
10595258
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
2025 ASEE Conference
Date Published:
Format(s):
Medium: X
Location:
2025 ASEE Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Ahram, Tareq; Karwowski, Waldemar (Ed.)
    AI, robotics, and automation are reshaping many industries, including the Architecture, Engineering, and Construction (AEC) industries. For students aiming to enter these evolving fields, comprehensive and accessible training in high-tech roles is becoming increasingly important. Traditional robotics education, while often effective, usually necessitates small class sizes and specialized equipment. On-the-job training introduces safety risks, particularly for inexperienced individuals. The integration of advanced technologies for training presents an alternative that reduces the need for extensive physical resources and minimizes safety concerns. This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), an innovative project that integrates the use of Artificial Intelligence (AI), Virtual Reality (VR), and game-assisted learning for teaching robotic arms operations. The goal of this project is to address the limitations of traditional training through the implementation of personalized learning strategies supported by Adaptive Learning Systems (ALS). These systems hold the potential to transform education by customizing content to cater to various levels of understanding, preferred learning styles, past experiences, and diverse linguistic and socio-cultural backgrounds.Central to IL-PRO is the development of its ALS, which uses student progress variables and multimodal machine learning to infer students’ level of understanding and automate task and feedback delivery. The curriculum is organized into modules, starting with fundamental robotic concepts, and advancing to complex motion planning and programming. The curriculum is guided by a learner model that is continuously refined through data collection. Furthermore, the project incorporates gaming elements into its VR learning approach to create an engaging educational environment. Thus, the learning content is designed to engage students with simulated robots and input devices to solve sequences of game-based challenges. The challenge sequences are designed similarly to levels in a game, each with increasing complexity, in order to systematically incrementally build students' knowledge, skills, and confidence in robotic operations. The project is conducted by a team of interdisciplinary faculty from Florida International University (FIU), the University of California Irvine (UCI), the University of Hawaii (UH) and the University of Kansas-Missouri (UKM). The collaboration between these institutions enables the sharing of resources and expertise that are essential for the development of this comprehensive learning platform. 
    more » « less
  2. Sonification is a method to represent data and convey information using sound. Just like the Geiger counter, humans can use sound to better understand complex sets of data that are either unable to be seen or visualized or that are too complex to understand with visual displays. Sonification research and learning have been predominantly conducted at the higher education level. However, as STEM-related programs and activities continue to be increasingly important in secondary school education, it is possible to expose high school students to university-level research through project-based learning (PBL) activities in the classroom. Using a physical snake robot prototype that was built and programmed with low-cost materials, high school students are introduced to the field of sonification and its applications to snake robots. This dissertation demonstrates the feasibility of using project-based learning to teach university level research in secondary school education. Using the sonification of snake robot movement, students learned advanced topics in robotics with the goal of realizing that university level research is accessible and understandable through PBL. This paper will begin by discussing the concept of human-robot interaction, introduce sonification, and give a brief overview of project-based learning. A detailed discussion of how the snake robot prototype was constructed and programmed, an in-depth explanation of the sonification algorithm that was used, and how sonification was taught in a high school classroom using PBL is presented along with student feedback and suggestions for future work. 
    more » « less
  3. Despite its potential for STEM education, educational robotics remains out of reach for many classrooms due to upfront purchase costs, maintenance requirements, storage space, and numerous other barriers to entry. As demonstrated previously, these physical robot limitations can be reduced or eliminated through simulation. This work presents a new version of RoboScape Online, a browser-based networked educational robotics simulation platform that aims to make robotics education more accessible while expanding both the breadth and depth of topics taught. Through cloud-hosted simulations, this platform enables distant students to collaborate and compete in real-time. Integration with NetsBlox, a block-based programming environment, allows students at any level to participate in computer science activities. By incorporating a virtual machine for running NetsBlox code into the server, RoboScape Online enables scenarios to be built using the same syntax and abstractions used to program the robots. This approach enables more creative curriculum activities while proving that block-based programming is a valuable development tool, not just a “toy language”. Classroom case studies demonstrate RoboScape Online’s potential to improve students’ computational thinking skills and foster positive attitudes toward STEM subjects, with especially significant improvements in attitudes toward self-expression and creativity within the realm of computer science. 
    more » « less
  4. This paper describes two exemplary projects on physical ROS-compatible robots (i.e., Turtlebot3 Burger and Waffle PI) for an undergraduate robotics course, aiming to foster students’ problem-solving skills through project-based learning. The context of the study is a senior-level technical elective course in the Department of Computer Engineering Technology at a primarily undergraduate teaching institution. Earlier courses in the CET curriculum have prepared students with programming skills in several commonly used languages, including Python, C/C++, Java, and MATLAB. Students’ proficiency in programming and hands-on skills makes it possible to implement advanced robotic control algorithms in this robotics course, which has a 3-hour companion lab session each week. The Robot Operating System (ROS) is an open-source framework that helps developers build and reuse code between robotic applications. Though mainly used as a research platform, instructors in higher education take action in bringing ROS and its recent release of ROS 2 into their classrooms. Our earlier work controlled a simulated robot via ROS in a virtual environment on the MATLAB-ROS-Gazebo platform. This paper describes its counterparts by utilizing physical ROS-compatible autonomous ground robots on the MATLAB-ROS2-Turtlebot3 platform. The two exemplary projects presented in this paper cover sensing, perception, and control which are essential to any robotic application. Sensing is via the robot’s onboard 2D laser sensor. Perception involves pattern classification and recognition. Control is shown via path planning. We believe the physical MATLAB-ROS2-Turtlebot3 platform will help to enhance robotics education by exposing students to realistic situations. It will also provide opportunities for educators and students to explore AI-facilitated solutions when tackling everyday problems. 
    more » « less
  5. This innovative practice work in progress paper describes an interdisciplinary course, “Industry 4.0 Robotics,” aimed at fostering deep learning and innovation in students across Manufacturing, Robotics, Computer Science, Software Engineering, Networking, Cybersecurity, and Technology Management. The course, jointly taught by faculty from different domains, emphasizes interdisciplinary connections in Industry 4.0 (IN4.0) Robotics through a combination of lectures, real-world insights from industry guest speakers, and hands-on interdisciplinary project-based learning. The contribution of this work lies in its innovative approach that combines proven best practices in education, inspiring deep learning, and an appreciation of interdisciplinary teamwork. The course design builds upon education research on the benefits of leveraging student creativity and requirements engineering practices as learning tools that allow students to develop a deeper understanding. While the benefits of these practices, commonly cited for developing enhanced problem-solving and cognitive flexibility skills, are becoming well understood in many individual disciplines, far less has been published on best practices for achieving this in interdisciplinary thinking. This course design explores this through using hybrid experiential problem based learning and project based learning for students to develop an understanding of interdisciplinary challenges and opportunities. While the benefits of individual educational practices have been studied within specific disciplines, this work extends the understanding of these practices when applied to interdisciplinary challenges, such as those encountered in Industry 4.0 robotics. The course design aims to bridge the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work. This work in progress seeks to share early results showcasing the benefits of interdisciplinary teamwork and problem-solving. By articulating observations of commonalities and differences with prior work within individual disciplines, the paper aims to highlight the unique advantages of this interdisciplinary learning experience, offering insights into the potential impact on student learning. The chosen approach stems from the anticipation of future challenges increasingly necessitating interdisciplinary solutions. The goal of this work is to understand how best practices from individual disciplines can be effectively incorporated into interdisciplinary courses, maximizing student learning, and uncovering unique learning outcomes resulting from this innovative approach. The course design intentionally bridges the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work, to encourage effective communication and collaboration within mixed student teams. While this remains a work in progress, initial observations reveal a heightened interdisciplinary curiosity among students, driving deep learning as they explore the interconnectedness of their own discipline with others within their teams. This curiosity propels self-led exploration and understanding of how their expertise intersects with diverse knowledge areas, creating opportunities for innovative solutions at these disciplinary intersections. This work contributes to the broader landscape of engineering and computing education by offering insights into the practical application of interdisciplinary learning in preparing students for the complex challenges of Industry 4.0. 
    more » « less