Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions. 
                        more » 
                        « less   
                    This content will become publicly available on January 9, 2026
                            
                            Towards a ‘people and nature’ paradigm for biodiversity and infectious disease
                        
                    
    
            Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers’ attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems—a‘people and nature’paradigm—is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission (‘spillback’) in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10595285
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 380
- Issue:
- 1917
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A comprehensive approach to integrated one health surveillance and responseSurveillance data plays a crucial role in understanding and responding to emerging infectious diseases; here, we learn why adopting a One Health surveillance approach to EIDs can help to protect human, animal, and environmental health. Over 75% of emerging infectious diseases (EIDs) affecting humans are zoonotic diseases with animal hosts, which can be transmitted by waterborne, foodborne, vector-borne, or air-borne pathways. (7) Early detection is important and allows for a rapid response through preventive and control measures. However, early detection of EIDs is hindered by several obstacles, such as climate change, which can alter habitats, leading to shifts in the distribution of disease- carrying vectors like mosquitoes and ticks. This can result in diseases such as malaria, dengue fever, and Lyme disease becoming more common in areas with established transmission or spreading to new areas entirely. (4) Environmental changes such as deforestation and urbanization disrupt ecosystems, increasing the likelihood of zoonotic disease spillover from wildlife to humans. In addition to working at the interface of these changes, detection and tracking of EIDs also requires sharing and standardization of complex data and integrating processes across different regions and health systems.more » « less
- 
            Bat‐borne pathogens are a threat to global health and in recent history have had major impacts on human morbidity and mortality. Examples include diseases such as rabies, Nipah virus encephalitis, and severe acute respiratory syndrome (SARS). Climate change may exacerbate the emergence of bat‐borne pathogens by affecting the ecology of bats in tropical ecosystems. Here, we report the impacts of climate change on the distributional ecology of the common vampire batDesmodus rotundusacross the last century. Our retrospective analysis revealed a positive relationship between changes in climate and the northern expansion of the distribution ofD. rotundusin North America. Furthermore, we also found a reduction in the standard deviation of temperatures atD. rotunduscapture locations during the last century, expressed as more consistent, less‐seasonal climate in recent years. These results elucidate an association betweenD. rotundusrange expansion and a continental‐level rise in rabies virus spillover transmission fromD. rotundusto cattle in the last 50 years of the 120‐year study period. This correlative study, based on field observations, offers empirical evidence supporting previous statistical and mathematical simulation‐based studies reporting a likely increase of bat‐borne diseases in response to climate change. We conclude that theD. rotundusrabies system exemplifies the consequences of climate change augmentation at the wildlife–livestock–human interface, demonstrating how global change acts upon these complex and interconnected systems to drive increased disease emergence.more » « less
- 
            Zoonotic diseases are infectious diseases of humans caused by pathogens that are shared between humans and other vertebrate animals. Previously, pristine natural areas with high biodiversity were seen as likely sources of new zoonotic pathogens, suggesting that biodiversity could have negative impacts on human health. At the same time, biodiversity has been recognized as potentially benefiting human health by reducing the transmission of some pathogens that have already established themselves in human populations. These apparently opposing effects of biodiversity in human health may now be reconcilable. Recent research demonstrates that some taxa are much more likely to be zoonotic hosts than others are, and that these animals often proliferate in human-dominated landscapes, increasing the likelihood of spillover. In less-disturbed areas, however, these zoonotic reservoir hosts are less abundant and nonreservoirs predominate. Thus, biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens. This new synthesis of the effects of biodiversity on zoonotic diseases presents an opportunity to articulate the next generation of research questions that can inform management and policy. Future studies should focus on collecting and analyzing data on the diversity, abundance, and capacity to transmit of the taxa that actually share zoonotic pathogens with us. To predict and prevent future epidemics, researchers should also focus on how these metrics change in response to human impacts on the environment, and how human behaviors can mitigate these effects. Restoration of biodiversity is an important frontier in the management of zoonotic disease risk.more » « less
- 
            Zoonotic diseases, including those carried by mammalian hosts, pose a significant threat to human health worldwide and substantial investment in wildlife disease surveillance is aimed at identifying the risk of spillover from wildlife to human populations where they interact. However, host species diversity is highest in the most intact habitats away from human habitation and most of the potential host species within these habitats are unsampled for infections. This is particularly true in biodiverse tropical ecosystems where the prevalence and identity of infections are the least known. We screened for presence of trypanosomes in 2,335 specimens from 66 species of rodents and shrews sampled from 11 mountain areas on the tropical island of Sulawesi, Indonesia. Our sampling spanned from the edge of human occupation into the most intact forests available on the island with sampling elevations ranging from 220 to 2,700 m. The two most common Trypanosoma species we detected were a native species from the Theileri clade (19.0 % of samples) and an introduced species from the Lewisi clade (5.1 % of murid rodent samples). Both species were detected at all elevations, extending from village edges to mountain peaks, but both reached their highest prevalence above 2,000 m elevation in the most intact forest away from human habitation. If these patterns with trypanosome infections are typical of other zoonotic diseases, wildlife disease surveillance would need to shift resources to study host-pathogen dynamics in more remote ecosystems. Sampling focused on the breadth of biodiversity, such as collected by and housed in natural history collections, is needed to further our understanding of zoonotic diseases and their prevalence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
