Summary Conifers prevail in the canopies of many terrestrial biomes, holding a great ecological and economic importance globally. Current increases in temperature and aridity are imposing high transpirational demands and resulting in conifer mortality. Therefore, identifying leaf structural determinants of water use efficiency is essential for predicting physiological impacts due to environmental variation.Using synchrotron‐generated microtomography imaging, we extracted leaf volumetric anatomy and stomatal traits in 34 species across conifers with a special focus onPinus, the richest conifer genus.We show that intrinsic water use efficiency (WUEi) is positively driven by leaf vein volume. Needle‐like leaves ofPinus, as opposed to flat leaves or flattened needles of other genera, showed lower mesophyll porosity, decreasing the relative mesophyll volume. This led to increased ratios of stomatal pore number per mesophyll or intercellular airspace volume, which emerged as powerful explanatory variables, predicting both stomatal conductance and WUEi.Our results clarify how the three‐dimensional organisation of tissues within the leaf has a direct impact on plant water use and carbon uptake. By identifying a suite of structural traits that influence important physiological functions, our findings can help to understand how conifers may respond to the pressures exerted by climate change.
more »
« less
This content will become publicly available on March 1, 2026
High hydraulic safety, water use efficiency and a conservative resource‐use strategy in woody species of high‐altitude environments: A global study
Abstract Understanding the impact of altitude on leaf hydraulic, gas exchange, and economic traits is crucial for comprehending vegetation properties and ecosystem functioning. This knowledge also helps to elucidate species' functional strategies regarding their vulnerability or resilience to global change effects in alpine environments. Here, we conducted a global study of dataset encompassing leaf hydraulic, gas exchange, and economic traits for 3391 woody species. The results showed that high‐altitude species possessed greater hydraulic safety (KleafP50), higher water use efficiency (WUEi) and conservative resource use strategy such as higher leaf mass per area, longer leaf lifespan, lower area‐based leaf nitrogen and phosphorus contents, and lower rates of photosynthesis and dark respiration. Conversely, species at lower altitudes exhibited lower hydraulic safety (KleafP50), lower water use efficiency (WUEi) and an acquisitive resource use strategy. These global patterns of leaf traits in relation to altitude reveal the strategies that alpine plants employ for hydraulic safety, water use efficiency, and resource, which have important implications for predicting forest productivity and acclimation to rapid climate change.
more »
« less
- Award ID(s):
- 1943583
- PAR ID:
- 10595476
- Publisher / Repository:
- Physiologia Plantarum
- Date Published:
- Journal Name:
- Physiologia Plantarum
- Volume:
- 177
- Issue:
- 2
- ISSN:
- 0031-9317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California CeanothusABSTRACT Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleafandgs, respectively) to dehydration, and their association with anatomy, in seven species of CaliforniaCeanothusgrown in a common garden, including some of the most drought‐tolerant species in the semi‐arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline ofKleafin driving stomatal closure. AcrossCeanothusspecies, maximumKleafandgswere negatively correlated, and bothKleafandgsshowed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline ingswas linked with a low ratio of maximum hydraulic supply to demand (i.e., maximumKleaf:gs). This sensitivity ofgs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg.Cerastesincludes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastesshow traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry‐climate adapted species.more » « less
-
Abstract While variation in mean annual precipitation (MAP) of the native habitat of a species has been shown to determine the ability of a species to resist a hydraulic decrease during drought, it remains unknown whether these variations in MAP also influence the ability of a species to recover and survive drought. Leaf hydraulic and gas exchange recovery following drought and the underlying mechanisms of these responses in sixCaraganaspecies from habitats along a large precipitation gradient were investigated during rehydration in a common garden. The gas exchange of species from arid habitats recovered more rapidly during rehydration after mild, moderate and severe drought stress treatments than species from humid habitats. The recovery of gas exchange was not associated with foliar abscisic acid concentration, but tightly related to the recovery of leaf hydraulic conductance (Kleaf). The recovery ofKleafwas associated with the loss ofKleafduring dehydration under mild and moderate drought stress, and to leaf xylem embolism formation under severe drought stress. Results pointed to the different ability to recover in gas exchange in sixCaraganaspecies post‐drought is associated with the MAP of the species in its native habitat.more » « less
-
Abstract Background and AimsVariation in architectural traits related to the spatial and angular distribution of leaf area can have considerable impacts on canopy-scale fluxes contributing to water-use efficiency (WUE). These architectural traits are frequent targets for crop improvement and for improving the understanding and predictions of net ecosystem carbon and water fluxes. MethodsA three-dimensional, leaf-resolving model along with a range of virtually generated hypothetical canopies were used to quantify interactions between canopy structure and WUE by examining its response to variation of leaf inclination independent of leaf azimuth, canopy heterogeneity, vegetation density and physiological parameters. Key ResultsOverall, increasing leaf area index (LAI), increasing the daily-averaged fraction of leaf area projected in the sun direction (Gavg) via the leaf inclination or azimuth distribution and increasing homogeneity had a similar effect on canopy-scale daily fluxes contributing to WUE. Increasing any of these parameters tended to increase daily light interception, increase daily net photosynthesis at low LAI and decrease it at high LAI, increase daily transpiration and decrease WUE. Isolated spherical crowns could decrease photosynthesis by ~60 % but increase daily WUE ≤130 % relative to a homogeneous canopy with equivalent leaf area density. There was no observed optimum in daily canopy WUE as LAI, leaf angle distribution or heterogeneity was varied. However, when the canopy was dense, a more vertical leaf angle distribution could increase both photosynthesis and WUE simultaneously. ConclusionsVariation in leaf angle and density distributions can have a substantial impact on canopy-level carbon and water fluxes, with potential trade-offs between the two. These traits might therefore be viable target traits for increasing or maintaining crop productivity while using less water, and for improvement of simplified models. Increasing canopy density or decreasing canopy heterogeneity increases the impact of leaf angle on WUE and its dependent processes.more » « less
-
Abstract Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground.more » « less
An official website of the United States government
