skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rhomboid-mediated cleavage of the immune receptor XA21 protects grain set and male fertility in rice
To maintain growth and to successfully reproduce, organisms must protect key functions in specific tissues, particularly when countering pathogen invasion using internal defensive proteins that may disrupt their own developmental processes. The rice immune receptor XA21 confers race-specific resistance againstXanthomonas oryzaepv.oryzae, which causes the deadly disease bacterial leaf blight. Here, we demonstrate that XA21 is cleaved by the rhomboid-like protease OsRBL3b, likely within its transmembrane domain.OsRBL3bmRNA transcripts are preferentially expressed in rice spikelets. Rice plants expressingXa21but lacking a functionalOsRBL3bdisplayed impaired anther dehiscence and pollen viability, resulting in male sterility and yield reduction with high levels of XA21 protein present in spikelets during anthesis. In leaves,osrbl3bmutants expressing XA21 had normal levels of this resistance protein and disease immunity. This balance between reproduction and disease resistance through the specific expression of a rhomboid protease may be key to limiting the detrimental effects of an active immune response and may be useful in future for genetic improvement of crops.  more » « less
Award ID(s):
1748105
PAR ID:
10595519
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
22
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnaporthe oryzae is the causal agent of rice blast disease, a major threat to global food security. Although M. oryzae infects a broad range of monocotyledonous plants, it fails to colonize dicot species such as Nicotiana benthamiana, offering a useful system to investigate nonhost resistance (NHR). In this study, we characterized the immune responses of N. benthamiana to M. oryzae by profiling defense-related gene expression, analyzing fungal invasion, and functionally dissecting key immune components. Time-course expression analyses revealed sustained upregulation of NbBAK1, NbEAS, NbWRKY22, and NbPR1, alongside dynamic regulation of NbCYP71D20 and NbSGT1. Virus-induced gene silencing demonstrated that silencing of NbSGT1, but not NbEAS or NbBAK1, significantly enhanced fungal colonization. Furthermore, salicylic acid (SA)-deficient NahG plants exhibited increased susceptibility, suggesting that SA and SGT1-dependent immunity synergistically contribute to NHR. Visualization of infection using a GFP-expressing fungal strain confirmed that suppression of SGT1 and SA signaling facilitated hyphal expansion into adjacent host cells. High-throughput screening of 179 M. oryzae candidate effectors revealed that 70 induced hypersensitive response-like cell death in N. benthamiana, a response that was abrogated by NbSGT1 silencing. These findings collectively demonstrate that SA signaling and SGT1-dependent effector-triggered immunity are critical barriers against M. oryzae invasion and highlight the potential of nonhost immune components as resources for engineering durable resistance in crops. 
    more » « less
  2. Rice resistance (R) genes have been effectively deployed to prevent blast disease caused by the fungal pathogen Magnaporthe oryzae, one of the most serious threats for stable rice production worldwide. Weedy rice competing with cultivated rice may carry novel or lost R genes. The quantitative trait locus qBR12.3b was previously mapped between two single nucleotide polymorphism markers at the 10,633,942-bp and 10,820,033-bp genomic positions in a black-hull-awned (BHA) weed strain using a weed-crop-mapping population under greenhouse conditions. In this study, we found a portion of the known resistance gene Ptr encoding a protein with four armadillo repeats and confers a broad spectrum of blast resistance. We then analyzed the sequences of the Ptr gene from weedy rice, PtrBHA, and identified a unique amino acid glutamine at protein position 874. Minor changes of protein conformation of the PtrBHAgene were predicted through structural analysis of PtrBHA, suggesting that the product of PtrBHAis involved in disease resistance. A gene-specific codominant marker HJ17-13 from PtrBHAwas then developed to distinguish alleles in weeds and crops. The PtrBHAgene existed in 207 individuals of the same mapping population, where qBR12.3b was mapped using this gene-specific marker. Disease reactions of 207 individuals and their parents to IB-33 were evaluated. The resistant individuals had PtrBHAwhereas the susceptible individuals did not, suggesting that HJ17-13 is reliable to predict qBR12.3b. Taken together, this newly developed marker, and weedy rice genotypes carrying qBR12.3b, are useful for blast improvement using marker assisted selection. 
    more » « less
  3. ABSTRACT ObjectiveInflammation may be an integral physiological mechanism through which discrimination impacts cardiovascular health and contributes to racial health disparities. Limited research has examined psychosocial factors that protect against the negative effects of discrimination on inflammation. Perceived control is a promising possible protective factor, given that it has been shown to moderate the relationship between other psychosocial stressors and physiological outcomes. This study thus tested whether systemic inflammation mediated the link between discrimination and cardiovascular health and whether perceived control moderated this relationship. MethodsData for this project included 347 non-Hispanic/Latinx Black adults (mean [standard deviation] age = 51.64 [11.24] years; 33% female) taken from the Midlife in the United States study. Perceived control and daily discrimination were assessed via self-report, and inflammation was measured via circulating levels of C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, and tumor necrosis factor α. Cardiovascular health was measured by morbidity of cardiovascular conditions: heart disease, hypertension, and/or stroke. ResultsCRP (indirect effect:b =0.004, 95% confidence interval [CI] = 0.001–0.007) and fibrinogen (indirect effect:b =0.002, 95% CI = 0.0003–0.005) mediated the link between discrimination and cardiovascular conditions. Perceived control moderated the relationship between discrimination and CRP (F(1, 293) = 4.58, ΔR2= 0.013,b= −0.02, SE = 0.01,p= .033). CRP mediated the link between discrimination and cardiovascular conditions only for those who reported low levels of perceived control (Index = −0.003, 95% CI = −0.007 to −0.0001). ConclusionFindings provide empirical evidence of inflammation as a mechanism linking discrimination to cardiovascular conditions among Black Americans. Additionally, perceived control may be protective. Findings could suggest beliefs about control as a potential intervention target to help reduce the negative effects of discrimination on cardiovascular health among Black Americans. 
    more » « less
  4. Goldman, Gustavo H (Ed.)
    ABSTRACT Infections caused by the emerging pathogenic yeastClavispora (Candida) lusitaniaecan be difficult to manage due to multi-drug resistance. Resistance to the frontline antifungal fluconazole (FLZ) inCandidaspp. is commonly acquired through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. These activated Mrr1 variants enhance FLZ efflux via upregulation of the multi-drug transporter geneMDR1. Recently, it was reported that, unlike in the well-studiedCandida albicansspecies,C. lusitaniaeandCandida parapsilosiswith activated Mrr1 also have high expression ofCDR1, which encodes another multi-drug transporter with overlapping but distinct transported substrate profiles and Cdr1-dependent FLZ resistance. To better understand the mechanisms of Mrr1 regulation ofMDR1andCDR1, and other co-regulated genes, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analysis of Mrr1 binding sites. Mrr1 bound the promoter regions ofMDR1andCDR1, as well asFLU1, which encodes another transporter capable of FLZ efflux. Mdr1 and Cdr1 independently contributed to the decreased susceptibility of theMRR1GOFstrains against diverse clinical azoles and other antifungals, including 5-flucytosine. A consensus motif, CGGAGWTAR, enriched in Mrr1-boundC. lusitaniaeDNA was also conserved upstream ofMDR1andCDR1across species, includingC. albicans. CUT&RUN and RNA-seq data were used to define the Mrr1 regulon, which includes genes involved in transport, stress response, and metabolism. Activated and inducible Mrr1 bound similar regions in the promoters of Mrr1 regulon genes. Our studies provide new evolutionary insights into the coordinated regulation of multi-drug transporters and potential mechanism(s) that aid secondary resistance acquisition in emergingCandida. IMPORTANCEUnderstanding antifungal resistance in emergingCandidapathogens is essential to managing treatment failures and guiding the development of new therapeutic strategies. Like otherCandidaspecies, the environmental opportunistic fungal pathogenClavispora(Candida)lusitaniaecan acquire resistance to the antifungal fluconazole by overexpression of the multi-drug efflux pump Mdr1 through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. Here, we show thatC. lusitaniaeMrr1 also directly regulatesCDR1, another major multi-drug transporter gene, along withMDR1. In strains with activated Mrr1, upregulation ofMDR1andCDR1protects against diverse antifungals, potentially aiding the rise of other resistance mutations. Mrr1 also regulates several stress response and metabolism genes, thereby providing new perspectives into the physiology of drug-resistant strains. The identification of an Mrr1 binding motif that is conserved across strains and species will advance future efforts to understand multi-drug resistance acrossCandidaspecies. 
    more » « less
  5. Gilbert, Jack A (Ed.)
    ABSTRACT Bacteria and archaea employ a rudimentary immune system, CRISPR-Cas, to protect against foreign genetic elements such as bacteriophage. CRISPR-Cas systems are found inBombella apis.B. apisis an important honey bee symbiont, found primarily in larvae, queens, and hive compartments.B. apisis found in the worker bee gut but is not considered a core member of the bee microbiome and has therefore been understudied with regard to its importance in the honey bee colony. However,B. apisappears to play beneficial roles in the colony, by protecting developing brood from fungal pathogens and by bolstering their development under nutritional stress. Previously, we identified CRISPR-Cas systems as being acquired byB. apisin its transition to bee association, as they are absent in a sister clade. Here, we assess the variation and distribution of CRISPR-Cas types acrossB. apisstrains. We found multiple CRISPR-Cas types, some of which have multiple arrays, within the sameB. apisgenomes and also in the honey bee queen gut metagenomes. We analyzed the spacers between strains to identify the history of mobile element interaction for eachB. apisstrain. Finally, we predict interactions between viral sequences and CRISPR systems from different honey bee microbiome members. Our analyses show that theB. apisCRISPR-Cas systems are dynamic; that microbes in the same niche have unique spacers, which supports the functionality of these CRISPR-Cas systems; and that acquisition of new spacers may be occurring in multiple locations in the genome, allowing for a flexible antiviral arsenal for the microbe. IMPORTANCEHoney bee worker gut microbes have been implicated in everything from protection from pathogens to breakdown of complex polysaccharides in the diet. However, there are multiple niches within a honey bee colony that host different groups of microbes, including the acetic acid bacteriumBombella apis.B. apisis found in the colony food stores, in association with brood, in worker hypopharyngeal glands, and in the queen’s digestive tract. The roles thatB. apismay serve in these environments are just beginning to be discovered and include the production of a potent antifungal that protects developing bees and supplementation of dietary lysine to young larvae, bolstering their nutrition. Niche specificity inB. apismay be affected by the pressures of bacteriophage and other mobile elements, which may target different strains in each specific bee environment. Studying the interplay betweenB. apisand its mobile genetic elements (MGEs) may help us better understand microbial community dynamics within the colony and the potential ramifications for the honey bee host. 
    more » « less