The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from the air temperature, soil temperature, soil volumetric water content, and electrical conductivity sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.
more »
« less
Plant functional diversity shapes soil respiration response to soil moisture availability
- Award ID(s):
- 2120153
- PAR ID:
- 10595570
- Publisher / Repository:
- Ecosystems
- Date Published:
- Journal Name:
- Ecosystems
- Volume:
- 28
- Issue:
- 2
- ISSN:
- 1432-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes air temperature, soil temperature at 5 cm, and soil volumetric water content at 5 cm, and soil CO2 flux at the time of sampling, as well as gap-filled soil CO2 fluxes using non-linear least squares regression. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.more » « less
-
Phosphorus (P) is an essential nutrient for life. Deficits in soil P reduce primary production and alter biodiversity. A soil P paradigm based on studies of soils that form on flat topography, where erosion rates are minimal, indicates P is supplied to soil mainly as apatite from the underlying parent material and over time is lost via weathering or transformed into labile and less-bioavailable secondary forms. However, little is systematically known about P transformation and bioavailability on eroding hillslopes, which make up the majority of Earth's surface. By linking soil residence time to P fractions in soils and parent material, we show that the traditional concept of P transformation as a function of time has limited applicability to hillslope soils of the western Southern Alps (New Zealand) and Northern Sierra Nevada (USA). Instead, the P inventory of eroding soils at these sites is dominated by secondary P forms across a range of soil residence times, an observation consistent with previously published soil P data. The findings for hillslope soils contrast with those from minimally eroding soils used in chronosequence studies, where the soil P paradigm originated, because chronosequences are often located on landforms where parent materials are less chemically altered and therefore richer in apatite P compared to soils on hillslopes, which are generally underlain by pre-weathered parent material (e.g., saprolite). The geomorphic history of the soil parent material is the likely cause of soil P inventory differences for eroding hillslope soils versus geomorphically stable chronosequence soils. Additionally, plants and dust seem to play an important role in vertically redistributing P in hillslope soils. Given the dominance of secondary soil P in hillslope soils, limits to ecosystem development caused by an undersupply of bio-available P may be more relevant to hillslopes than previously thought.more » « less
An official website of the United States government

