skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: RNA sequencing identifies MAP1A and PTTG1 as predictive genes of aging CD264+ human mesenchymal stem cells at an early passage
Abstract Molecular profiles of mesenchymal stem cells (MSCs) are needed to standardize the composition and effectiveness of MSC therapeutics. This study employs RNA sequencing to identify genes to be used in concert with CD264 as a molecular profile of aging MSCs at a clinically relevant culture passage. CD264and CD264+populations were isolated by fluorescence-activated cell sorting from passage 4 MSC cultures. CD264+MSCs exhibited an aging phenotype relative to their CD264counterpart. Donor-matched CD264−/+mRNA samples from 5 donors were subjected to pair-ended, next-generation sequencing. An independent set of 5 donor MSCs was used to validate differential expression of select genes with quantitative reverse transcription PCR. Pairwise differential expression analysis identified 2,322 downregulated genes and 2,695 upregulated genes in CD264+MSCs relative to donor-matched CD264MSCs with a Benjamini–Hochberg adjustedp-value (BHpadj) < 0.1. Nearly 25% of these genes were unique to CD264−/+MSCs and not differentially expressed at a significance level of BHpadj < 0.1 in previous RNA sequencing studies of early- vs. late-passage MSCs. Least Absolute Shrinkage and Selection Operator regression identified microtubule-associated protein 1A (MAP1A) and pituitary tumor-transforming gene 1 (PTTG1) as predictive genes of CD264+MSCs. CombinedMAP1AandPTTG1expression correctly classified CD264 status of MSC samples with an accuracy of 100%. Differential expression and predictive ability ofMAP1AandPTTG1compared favorably with that of existing senescence markers expressed in early passage CD264−/+MSCs. This study provides the first linkage ofMAP1Ato CD264, aging and senescence. Our findings have application as quality metrics to standardize the composition of MSC therapies and as molecular targets to slow/reverse cellular aging.  more » « less
Award ID(s):
1604129
PAR ID:
10595722
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Cytotechnology
Volume:
77
Issue:
2
ISSN:
0920-9069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM‐MSC) cultures. Sorted CD264+hBM‐MSCs from two age‐matched donors have elevated β‐galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264hBM‐MSCs. Counterintuitive to their aging phenotype, CD264+hBM‐MSCs exhibited comparable survival to matched CD264hBM‐MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony‐forming efficiency. These findings have ramifications for the preparation of hBM‐MSC therapies given the prevalence of aging CD264+cells in hBM‐MSC cultures and the popularity of colony‐forming efficiency as a quality control metric in preclinical and clinical studies with MSCs. 
    more » « less
  2. null (Ed.)
    Abstract Mesenchymal stem cell (MSC)-based therapy has shown great promises in various animal disease models. However, this therapeutic potency has not been well claimed when applied to human clinical trials. This is due to both the availability of MSCs at the time of administration and lack of viable expansion strategies. MSCs are very susceptible to in vitro culture environment and tend to adapt the microenvironment which could lead to cellular senescence and aging. Therefore, extended in vitro expansion induces loss of MSC functionality and its clinical relevance. To combat this effect, this work assessed a novel cyclical aggregation as a means of expanding MSCs to maintain stem cell functionality. The cyclical aggregation consists of an aggregation phase and an expansion phase by replating the dissociated MSC aggregates onto planar tissue culture surfaces. The results indicate that cyclical aggregation maintains proliferative capability, stem cell proteins, and clonogenicity, and prevents the acquisition of senescence. To determine why aggregation was responsible for this phenomenon, the integrated stress response pathway was probed with salubrial and GSK-2606414. Treatment with salubrial had no significant effect, while GSK-2606414 mitigated the effects of aggregation leading to in vitro aging. This method holds the potential to increase the clinical relevance of MSC therapeutic effects from small model systems (such as rats and mice) to humans, and may open the potential of patient-derived MSCs for treatment thereby removing the need for immunosuppression. 
    more » « less
  3. Leaves are the primary harvest portion in forage crops such as alfalfa (Medicago sativa). Delaying leaf senescence is an effective strategy to improve forage biomass production and quality. In this study, we employed transcriptome sequencing to analyze the transcriptional changes and identify key senescence-associated genes under age-dependent leaf senescence in Medicago truncatula, a legume forage model plant. Through comparing the obtained expression data at different time points, we obtained 1057 differentially expressed genes, with 108 consistently up-regulated genes across leaf growth and senescence. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the 108 SAGs mainly related to protein processing, nitrogen metabolism, amino acid metabolism, RNA degradation and plant hormone signal transduction. Among the 108 SAGs, seven transcription factors were identified in which a novel bZIP transcription factor MtbZIP60 was proved to inhibit leaf senescence. MtbZIP60 encodes a nuclear-localized protein and possesses transactivation activity. Further study demonstrated MtbZIP60 could associate with MtWRKY40, both of which exhibited an up-regulated expression pattern during leaf senescence, indicating their crucial roles in the regulation of leaf senescence. Our findings help elucidate the molecular mechanisms of leaf senescence in M. truncatula and provide candidates for the genetic improvement of forage crops, with a focus on regulating leaf senescence. 
    more » « less
  4. The surface topography and chemistry of titanium–aluminum–vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates. MSCs on MN surfaces exhibited enhanced osteoblastic differentiation, evidenced by increased expression of RUNX2, SP7, BGLAP, BMP2, and BMPR1A (fold increases: 3.2, 1.8, 1.4, 1.3, and 1.2). The MN surface also induced a pro-healing inflammasome with upregulation of anti-inflammatory mediators (170–200% increase) and downregulation of pro-inflammatory factors (40–82% reduction). Integrin expression shifted towards osteoblast-associated integrins on MN surfaces. RNA-seq analysis revealed distinct gene expression profiles between MSCs on MN surfaces and those in OM, with only 199 shared genes out of over 1000 differentially expressed genes. Pathway analysis showed that MN surfaces promoted bone formation, maturation, and remodeling through non-canonical Wnt signaling, while OM stimulated endochondral bone development and mineralization via canonical Wnt3a signaling. These findings highlight the importance of Ti6Al4V surface properties in directing MSC differentiation and indicate that MN-modified surfaces act via signaling pathways that differ from OM culture methods, more accurately mimicking peri-implant osteogenesis in vivo. 
    more » « less
  5. Osteoarthritis, a chronic disease, remains an issue for adults that causes cartilage degradation within a joint . According to the Centers forDisease Control and Prevention (2023), over 32.5 million adults in the US are affected by osteoarthritis (OA). In this study we seek tounderstand the connection between tissue engineering and genetics to regenerate human articular cartilage (hAC). We purpose to validatea protocol for RNA isolation and characterize the transcriptome of hAC in a tri-layer fashion via bulk RNA sequencing (bulk-RNA-seq).Additionally, we aim to analyze the transcriptome of normal articular cartilage in comparison to the hAC chemical composition and physicalproperties. We are relating these properties to the tri-layers of hAC through histological staining with Safranin O—Fast green and imagingwith differential interference contrast (DIC) microscopy. We are relating these properties to superfic ial, middle, and deep zone with acryotome procedure, RNA extracted, and qualified by Bioanalyzer. Next, we generate bulk RNA sequencing of hAC layer-by-layer andcompare results to early passaging of Mesenchymal Stromal Cells (MSC) and tissues intended for Matrix-Induced Autologous ChondrocyteImplantation (MACI). We will use differential gene expression (DE) analysis by DESeq2 R package software for bulk-RNA-seq. The resultwill be interpreted in terms of differentiation from MSCs to gene expression patterns of tri-layer hAC. We will report on development andvalidation of protocols for isolating cells and their subsequent characterization with application in regenerating the tri-layered hACtranscriptome stimulatory bioreactors used in our laboratory and corresponding properties of the extracellular matrix (ECM) 
    more » « less