Abstract Atmospheric rivers (ARs) are a frequently studied phenomenon along the West Coast of the United States, where they are typically associated with the heaviest local flooding events and almost one-half of the annual precipitation totals. By contrast, ARs in the northeastern United States have received considerably less attention. The purpose of this study is to utilize a unique visual inspection methodology to create a 30-yr (1988–2017) climatology of ARs in the northeastern United States. Consistent with its formal definition, ARs are defined as corridors with integrated vapor transport (IVT) values greater than 250 kg m −1 s −1 over an area at least 2000 km long but less than 1000 km wide in association with an extratropical cyclone. Using MERRA2 reanalysis data, this AR definition is used to determine the frequency, duration, and spatial distribution of ARs across the northeastern United States. Approximately 100 ARs occur in the northeastern United States per year, with these ARs being quasi-uniformly distributed throughout the year. On average, northeastern U.S. ARs have a peak IVT magnitude between 750 and 999 kg m −1 s −1 , last less than 48 h, and arrive in the region from the west to southwest. Average AR durations are longer in summer and shorter in winter. Further, ARs are typically associated with lower IVT in winter and higher IVT in summer. Spatially, ARs more frequently occur over the Atlantic Ocean coastline and adjacent Gulf Stream waters; however, the frequency with which large IVT values are associated with ARs is highest over interior New England.
more »
« less
Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions
Abstract. Atmospheric rivers (ARs) are the primary mechanism for transporting water vapor from low latitudes to polar regions, playing a significant role in extreme weather in both the Arctic and Antarctica. With the rapidly growing interest in polar ARs during the past decade, it is imperative to establish an objective framework quantifying the strength and impact of these ARs for both scientific research and practical applications. The AR scale introduced by Ralph et al. (2019) ranks ARs based on the duration of AR conditions and the intensity of integrated water vapor transport (IVT). However, the thresholds of IVT used to rank ARs are selected based on the IVT climatology at middle latitudes. These thresholds are insufficient for polar regions due to the substantially lower temperature and moisture content. In this study, we analyze the IVT climatology in polar regions, focusing on the coasts of Antarctica and Greenland. Then we introduce an extended version of the AR scale tuned to polar regions by adding lower IVT thresholds of 100, 150, and 200 kg m−1 s−1 to the standard AR scale, which starts at 250 kg m−1 s−1. The polar AR scale is utilized to examine AR frequency, seasonality, trends, and associated precipitation and surface melt over Antarctica and Greenland. Our results show that the polar AR scale better characterizes the strength and impacts of ARs in the Antarctic and Arctic regions than the original AR scale and has the potential to enhance communication across observational, research, and forecasting communities in polar regions.
more »
« less
- PAR ID:
- 10595784
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 18
- Issue:
- 11
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 5239 to 5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the Arctic atmospheric river (AR) climatology based on twelve sets of labels derived from ERA5 and MERRA-2 reanalyses for 1980–2019. The ARs were identified and tracked in the 3-hourly reanalysis data with a multifactorial approach based on either atmospheric column-integrated water vapor (IWV) or integrated water vapor transport (IVT) exceeding one of the three climate thresholds (75th, 85th, and 95th percentiles). Time series analysis of the AR event counts from the AR labels showed overall upward trends from the mid-1990s to 2019. The 75th IVT- and IWV-based labels, as well as the 85th IWV-based labels, are likely more sensitive to Arctic surface warming, therefore, detected some broadening of AR-affected areas over time, while the rest of the labels did not. Spatial exploratory analysis of these labels revealed that the AR frequency of occurrence maxima shifted poleward from over-land in 1980–1999 to over the Arctic Ocean and its outlying Seas in 2000–2019. Regions across the Atlantic, the Arctic, to the Pacific Oceans trended higher AR occurrence, surface temperature, and column-integrated moisture. Meanwhile, ARs were increasingly responsible for the rising moisture transport into the Arctic. Even though the increase of Arctic AR occurrence was primarily associated with long-term Arctic surface warming and moistening, the effects of changing atmospheric circulation could stand out locally, such as on the Pacific side over the Chukchi Sea. The changing teleconnection patterns strongly modulated AR activities in time and space, with prominent anomalies in the Arctic-Pacific sector during the latest decade. Besides, the extreme events identified by the 95th-percentile labels displayed the most significant changes and were most influenced by the teleconnection patterns. The twelve Arctic AR labels and the detailed graphics in the atlas can help navigate the uncertainty of detecting and quantifying Arctic ARs and their associated effects in current and future studies.more » « less
-
Abstract An atmospheric river (AR) impacting Tasmania, Australia, and the Southern Ocean during the austral summer on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study campaign is analyzed using a modeling and observational approach. Gulfstream‐V dropsonde measurements and Global Precipitation Measurement radar analyses were used in conjunction with Weather Research and Forecasting model simulations with water vapor tracers to investigate the relative contributions of tropical and midlatitude moisture sources to the AR. Moisture associated with a monsoonal tropical depression became entrained into a midlatitude frontal system that extended to 60°S, reaching the associated low‐pressure system 850 km off the coast of Antarctica—effectively connecting the tropics and the polar region. Tropical moisture contributed to about 50% of the precipitable water within the AR as the flow moved over the Southern Ocean near Tasmania. The tropical contribution to precipitation decreased with latitude, from >70% over Australia, to ~50% off the Australian coast, to less than 5% poleward of 55°S. The integrated vapor transport (IVT) through the core of the AR reached above 500 kg m−1 s−1during 1200 UTC 28 January to 0600 UTC 29 January, 1.29 times the average amount of water carried by the world's largest terrestrial river, the Amazon. The high IVT strength might be attributed to the higher water vapor content associated with the warmer temperatures across Australia and the Southern Ocean in austral summer.more » « less
-
Abstract. Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extremesnowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on WestAntarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using anAntarctic-specific AR detection tool combined with theModern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m−2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m−2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB.more » « less
-
Abstract Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic.more » « less
An official website of the United States government

