skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 1, 2025

Title: Powder-bed additive manufacturing: The effect of layer thickness on powder bed density
Award ID(s):
2401277
PAR ID:
10595877
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Manufacturing Letters
Volume:
41
ISSN:
2213-8463
Page Range / eLocation ID:
898 to 902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Powder contamination during laser powder bed fusion is a critical concern for the quality assurance of parts. Herein, we studied the effect of Inconel 718 contamination on the properties of printed Ti6Al4V, two commonly printed alloys. Contaminated parts exhibited visual and microstructural defects, and a mere 0.5wt% IN718 contamination resulted in a 43% reduction in plastic strain without noticing surface-level cracking. Further contamination of 2.5 wt% IN718 promotes surface cracking that renders the material unable to deform plastically, highlighting the importance of proper powder handling and the detrimental effects that even small amounts of contaminants can have on AM-produced components. 
    more » « less