PremiseAcross taxa, vegetative and floral traits that vary along a fast‐slow life‐history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad‐scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments. MethodsWe used a line‐cross approach and quantitative trait locus (QTL) mapping to characterize the genetic basis of twenty leaf functional/physiological, life history, and floral traits in hybrids between annualized and perennial populations of scarlet monkeyflower (Mimulus cardinalis). ResultsWe mapped both single and multi‐trait QTLs for life history, leaf function and reproductive traits, but found no evidence of genetic co‐ordination across categories. A major QTL for three leaf functional traits (thickness, photosynthetic rate, and stomatal resistance) suggests that a simple shift in leaf anatomy may be key to adaptation to seasonally dry habitats. ConclusionsOur results suggest that the co‐ordination of resource‐acquisitive leaf physiological traits with a fast life‐history and more selfing mating system results from environmental selection rather than functional or genetic constraint. Independent assortment of distinct trait modules, as well as a simple genetic basis to leaf physiological traits associated with drought escape, may facilitate adaptation to changing climates. 
                        more » 
                        « less   
                    
                            
                            QTL analysis of divergent floral morphology traits between Gilia yorkii and G. capitata
                        
                    
    
            Abstract Speciation is a complex process typically accompanied by significant genetic and morphological differences between sister populations. In plants, divergent floral morphologies and pollinator differences can result in reproductive isolation between populations. Here, we explore floral trait differences between two recently diverged species, Gilia yorkii and G. capitata. The distributions of floral traits in parental, F1, and F2 populations are compared, and groups of correlated traits are identified. We describe the genetic architecture of floral traits through a quantitative trait locus analysis using an F2 population of 187 individuals. While all identified quantitative trait locus were of moderate (10–25%) effect, interestingly, most quantitative trait locus intervals were non-overlapping, suggesting that, in general, traits do not share a common genetic basis. Our results provide a framework for future identification of genes involved in the evolution of floral morphology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2310355
- PAR ID:
- 10595908
- Editor(s):
- Whitehead, A
- Publisher / Repository:
- GSA
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- Volume:
- 14
- Issue:
- 8
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vogel, K (Ed.)Abstract Insect pests can rapidly accumulate in number and thrive in diverse environments, making them valuable models for studying phenotypic plasticity and the genetic basis of local adaptation. The mountain pine beetle (Dendroctonus ponderosae) is a major forest pest, and adult body size and generation time are 2 traits that vary among populations and directly influence reproductive success and outbreak dynamics. To identify regions of the genome linked to these 2 traits, we generated double-digest RAD sequencing data from an F2 intercross, using populations from 2 Y haplogroups with phenotypic and genetic differences in these traits. A high-density linkage map was generated and QTL analyses performed. We identified a single large effect QTL for generation time, associated with an adult diapause. The QTL spans the entire X chromosome, peaking over the evolutionarily conserved portion of the X. We were unable to detect a significant QTL for body size. Our linkage map identified putative inversions shared by parents that are absent in the published reference genome, with 3 putative inversions on chromosomes 2, 3, and the X. We also detected extensive regions of low recombination that were associated with low gene density, indicative of large pericentromeric regions. Surprisingly, we found that in our cross, F2 males inherited X chromosomes with significantly fewer crossover events than F2 females. Our findings provide information about the recombination landscape, the sex-biased inheritance of recombined X's, and the genomic location of a key trait in a major forest pest.more » « less
- 
            Barton, Nick H. (Ed.)In the formation of species, adaptation by natural selection generates distinct combinations of traits that function well together. The maintenance of adaptive trait combinations in the face of gene flow depends on the strength and nature of selection acting on the underlying genetic loci. Floral pollination syndromes exemplify the evolution of trait combinations adaptive for particular pollinators. The North American wildflower genusPenstemondisplays remarkable floral syndrome convergence, with at least 20 separate lineages that have evolved from ancestral bee pollination syndrome (wide blue-purple flowers that present a landing platform for bees and small amounts of nectar) to hummingbird pollination syndrome (bright red narrowly tubular flowers offering copious nectar). Related taxa that differ in floral syndrome offer an attractive opportunity to examine the genomic basis of complex trait divergence. In this study, we characterized genomic divergence among 229 individuals from aPenstemonspecies complex that includes both bee and hummingbird floral syndromes. Field plants are easily classified into species based on phenotypic differences and hybrids displaying intermediate floral syndromes are rare. Despite unambiguous phenotypic differences, genome-wide differentiation between species is minimal. Hummingbird-adapted populations are more genetically similar to nearby bee-adapted populations than to geographically distant hummingbird-adapted populations, in terms of genome-widedXY. However, a small number of genetic loci are strongly differentiated between species. These approximately 20 “species-diagnostic loci,” which appear to have nearly fixed differences between pollination syndromes, are sprinkled throughout the genome in high recombination regions. Several map closely to previously established floral trait quantitative trait loci (QTLs). The striking difference between the diagnostic loci and the genome as whole suggests strong selection to maintain distinct combinations of traits, but with sufficient gene flow to homogenize the genomic background. A surprisingly small number of alleles confer phenotypic differences that form the basis of species identity in this species complex.more » « less
- 
            Abstract PremiseFloral scent is a complex trait that mediates many plant–insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. MethodsWe used a greenhouse common garden experiment to investigate variation in floral scent at three scales—within plants, among plants, and among populations—and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation inOenothera cespitosasubsp.marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. ResultsMultiple analytical approaches demonstrated substantial variation among and within populations in compound‐specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine‐derived compounds, and hypanthium length are consistent with a long‐tongued moth pollination syndrome. ConclusionsThe considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.more » « less
- 
            Abstract Variation in selfing rates within and among populations of hermaphroditic flowering plants can strongly influence the evolution of reproductive strategies and the genetic structure of populations. This intraspecific variation in mating patterns may reflect both genetic and ecological factors, but the relative importance of these factors remains poorly understood. Here, we explore how selfing in 13 natural populations of the perennial wildflowerMimulus ringensis influenced by (a) pollinator visitation, an ecological factor, and (b) floral display, a trait with a genetic component that also responds to environmental variation. We also explore whether genetically based floral traits, including herkogamy, affect selfing. We found substantial variation among populations in selfing rate (0.13–0.55). Selfing increased strongly and significantly with floral display, among as well as within populations. Selfing also increased at sites with lower pollinator visitation and low plant density. However, selfing was not correlated with floral morphology. Overall, these results suggest that pollinator visitation and floral display, two factors that interact to affect geitonogamous pollinator movements, can influence the selfing rate. This study identifies mechanisms that may play a role in maintaining selfing rate variation among populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    