skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 20, 2026

Title: Improving CLIP Counting Accuracy via Parameter-Efficient Fine-Tuning
We focus on addressing the object counting limitations of vision-language models, with a particular emphasis on Contrastive Language-Image Pre-training (CLIP) models. Centered on our hypothesis that counting knowledge can be abstracted into linear vectors within the text embedding space, we develop a parameter-efficient fine-tuning method and several zero-shot methods to improve CLIP's counting accuracy. Through comprehensive experiments, we demonstrate that our learning-based method not only outperforms full-model fine-tuning in counting accuracy but also retains the broad capabilities of pre-trained CLIP models. Our zero-shot text embedding editing techniques are also effective in situations where training data is scarce, and can be extended to improve Stable Diffusion's ability to generate images with precise object counts. We also contribute two specialized datasets to train and evaluate CLIP’s counting capabilities. Our code is available at https://github.com/UW-Madison-Lee-Lab/CLIP_Counting.  more » « less
Award ID(s):
2339978
PAR ID:
10595988
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Machine Learning Research, Inc. / OpenReview
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters. 
    more » « less
  2. Fine-tuning pre-trained language models is a common practice in building NLP models for various tasks, including the case with less supervision. We argue that under the few-shot setting, formulating fine-tuning closer to the pre-training objective shall be able to unleash more benefits from the pre-trained language models. In this work, we take few-shot named entity recognition (NER) for a pilot study, where existing fine-tuning strategies are much different from pre-training. We propose a novel few-shot fine-tuning framework for NER, FFF-NER. Specifically, we introduce three new types of tokens, “is-entity”, “which-type” and “bracket”, so we can formulate the NER fine-tuning as (masked) token prediction or generation, depending on the choice of the pre-training objective. In our experiments, we apply to fine-tune both BERT and BART for few-shot NER on several benchmark datasets and observe significant improvements over existing fine-tuning strategies, including sequence labeling, prototype meta-learning, and prompt-based approaches. We further perform a series of ablation studies, showing few-shot NER performance is strongly correlated with the similarity between fine-tuning and pre-training. 
    more » « less
  3. Training a referring expression comprehension (ReC) model for a new visual domain requires collecting referring expressions, and potentially corresponding bounding boxes, for images in the domain. While large-scale pre-trained models are useful for image classification across domains, it remains unclear if they can be applied in a zero-shot manner to more complex tasks like ReC. We present ReCLIP, a simple but strong zero-shot baseline that repurposes CLIP, a state-of-the-art large-scale model, for ReC. Motivated by the close connection between ReC and CLIP’s contrastive pre-training objective, the first component of ReCLIP is a region-scoring method that isolates object proposals via cropping and blurring, and passes them to CLIP. However, through controlled experiments on a synthetic dataset, we find that CLIP is largely incapable of performing spatial reasoning off-the-shelf. We reduce the gap between zero-shot baselines from prior work and supervised models by as much as 29% on RefCOCOg, and on RefGTA (video game imagery), ReCLIP’s relative improvement over supervised ReC models trained on real images is 8%. 
    more » « less
  4. Few-shot fine-tuning of text-to-image (T2I) generation models enables people to create unique images in their own style using natural languages without requiring extensive prompt engineering. However, fine-tuning with only a handful, as little as one, of image-text paired data prevents fine-grained control of style attributes at generation. In this paper, we present FineStyle, a few-shot fine-tuning method that allows enhanced controllability for style personalized text-to-image generation. To overcome the lack of training data for fine-tuning, we propose a novel conceptoriented data scaling that amplifies the number of image-text pair, each of which focuses on different concepts (e.g., objects) in the style reference image. We also identify the benefit of parameter-efficient adapter tuning of key and value kernels of cross-attention layers. Extensive experiments show the effectiveness of FineStyle at following fine-grained text prompts and delivering visual quality faithful to the specified style, measured by CLIP scores and human raters. 
    more » « less
  5. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    We propose CLIP-Lite, an information efficient method for visual representation learning by feature alignment with textual annotations. Compared to the previously proposed CLIP model, CLIP-Lite requires only one negative image-text sample pair for every positive image-text sample during the optimization of its contrastive learning objective. We accomplish this by taking advantage of an information efficient lower-bound to maximize the mutual information between the two input modalities. This allows CLIP-Lite to be trained with significantly reduced amounts of data and batch sizes while obtaining better performance than CLIP at the same scale. We evaluate CLIP-Lite by pretraining on the COCO-Captions dataset and testing transfer learning to other datasets. CLIP-Lite obtains a +14.0 mAP absolute gain in performance on Pascal VOC classification, and a +22.1 top-1 accuracy gain on ImageNet, while being comparable or superior to other, more complex, text-supervised models. CLIP-Lite is also superior to CLIP on image and text retrieval, zero-shot classification, and visual grounding. Finally, we show that CLIP-Lite can leverage language semantics to encourage bias-free visual representations that can be used in downstream tasks. Implementation: https://github.com/4m4n5/CLIP-Lite 
    more » « less