skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Current Advances in Genome Modeling Across Length Scales
ABSTRACT The physical organization of DNA within the nucleus is fundamental to a wide range of biological processes. The experimental investigation of the structure of genomic DNA remains challenging due to its large size and hierarchical arrangement. These challenges present considerable opportunities for combined experimental and modeling approaches. Physics‐based computational models, in particular, have emerged as essential tools for probing chromatin structure and dynamics across a wide range of length scales. Such models must necessarily be capable of bridging scales, and each scale presents its own subtleties and intricacies. This review discusses recent methodological advances in genomic structural modeling, emphasizing the need for multiscale integration to capture the hierarchical organization and molecular mechanisms that underlie chromatin structure and function. We present an analysis of state‐of‐the‐art methods, as well as a perspective on challenges and future opportunities across length scales ranging from bare DNA to nucleosomes and chromatin fibers, up to TAD and chromosome‐scale models. We emphasize models that connect genome organization to gene expression, models that leverage emerging machine learning capabilities, and models that develop multiscale approaches. We examine gaps in experimental data that computational models are poised to address and propose directions for future research that bridge theory and experiment in DNA structural biology.  more » « less
Award ID(s):
2235451
PAR ID:
10596126
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
15
Issue:
3
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo. 
    more » « less
  2. Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus. 
    more » « less
  3. Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms. 
    more » « less
  4. Abstract Through a variety of mechanisms, a healthy heart is able to regulate its structure and dynamics across multiple length scales. Disruption of these mechanisms can have a cascading effect, resulting in severe structural and/or functional changes that permeate across different length scales. Due to this hierarchical structure, there is interest in understanding how the components at the various scales coordinate and influence each other. However, much is unknown regarding how myofibril bundles are organized within a densely packed cell and the influence of the subcellular components on the architecture that is formed. To elucidate potential factors influencing cytoskeletal development, we proposed a computational model that integrated interactions at both the cellular and subcellular scale to predict the location of individual myofibril bundles that contributed to the formation of an energetically favorable cytoskeletal network. Our model was tested and validated using experimental metrics derived from analyzing single-cell cardiomyocytes. We demonstrated that our model-generated networks were capable of reproducing the variation observed in experimental cells at different length scales as a result of the stochasticity inherent in the different interactions between the various cellular components. Additionally, we showed that incorporating length-scale parameters resulted in physical constraints that directed cytoskeletal architecture toward a structurally consistent motif. Understanding the mechanisms guiding the formation and organization of the cytoskeleton in individual cardiomyocytes can aid tissue engineers toward developing functional cardiac tissue. 
    more » « less
  5. The design of structural and functional materials for specialized applications is experiencing significant growth fueled by rapid advancements in materials synthesis, characterization, and manufacturing, as well as by sophisticated computational materials modeling frameworks that span a wide spectrum of length and time scales in the mesoscale between atomistic and homogenized continuum approaches. This is leading towards a systems-based design methodology that will replace traditional empirical approaches, embracing the principles of the Materials Genome Initiative. However, there are several gaps in this framework as it relates to advanced structural materials development: (1) limited availability and access to high-fidelity experimental and computational datasets, (2) lack of co-design of experiments and simulation aimed at computational model validation, (3) lack of on-demand access to verified and validated codes for simulation and for experimental analyses, and (4) limited opportunities for workforce training and educational outreach. These shortcomings stifle major innovations in structural materials design. This paper describes plans for a community-driven research initiative that addresses current gaps based on best-practice recommendations of leaders in mesoscale modeling, experimentation, and cyberinfrastructure obtained at an NSF-sponsored workshop dedicated to this topic and subsequent discussions. The proposal is to create a hub for "Mesoscale Experimentation and Simulation co-Operation (h-MESO)---that will (I) provide curation and sharing of models, data, and codes, (II) foster co-design of experiments for model validation with systematic uncertainty quantification, and (III) provide a platform for education and workforce development. h-MESO will engage experimental and computational experts in mesoscale mechanics and plasticity, along with mathematicians and computer scientists with expertise in algorithms, data science, machine learning, and large-scale cyberinfrastructure initiatives. 
    more » « less