This content will become publicly available on December 1, 2025
Homology concordance and knot Floer homology
- PAR ID:
- 10596140
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Mathematische Annalen
- Volume:
- 390
- Issue:
- 4
- ISSN:
- 0025-5831
- Page Range / eLocation ID:
- 6111 to 6186
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. We develop persistent homology in the setting of filtrations of (Cˇech) closure spaces. Examples of filtrations of closure spaces include metric spaces, weighted graphs, weighted directed graphs, and filtrations of topological spaces. We use various products and intervals for closure spaces to obtain six homotopy theories, six cubical singular homology theories, and three simplicial singular homology theories. Applied to filtrations of closure spaces, these homology theories produce persistence modules. We extend the definition of Gromov-Hausdorff distance from metric spaces to filtrations of closure spaces and use it to prove that any persistence module obtained from a homotopy-invariant functor on closure spaces is stable.more » « less
An official website of the United States government
