skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Bright Side of Simple Heuristics for the TSP
The greedy and nearest-neighbor TSP heuristics can both have $$\log n$$ approximation factors from optimal in worst case, even just for $$n$$ points in Euclidean space. In this note, we show that this approximation factor is only realized when the optimal tour is unusually short. In particular, for points from any fixed $$d$$-Ahlfor's regular metric space (which includes any $$d$$-manifold like the $$d$$-cube $[0,1]^d$ in the case $$d$$ is an integer but also fractals of dimension $$d$$ when $$d$$ is real-valued), our results imply that the greedy and nearest-neighbor heuristics have additive errors from optimal on the order of the optimal tour length through random points in the same space, for $d>1$.  more » « less
Award ID(s):
1952285
PAR ID:
10596447
Author(s) / Creator(s):
;
Publisher / Repository:
Free journal network
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
31
Issue:
4
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0. 
    more » « less
  2. Keil, Mark; Mondal, Debajyoti (Ed.)
    Finding the kth nearest neighbor to a query point is a ubiquitous operation in many types of metric computations, especially those in unsupervised machine learning. In many such cases, the distance to k sample points is used as an estimate of the local density of the sample. In this paper, we give an algorithm that takes a finite metric (P,d) and an integer k and produces a subset S ⊆ P with the property that for any q ∈ P, the distance to the second nearest point of S to q is a constant factor approximation to the distance to the kth nearest point of P to q. Thus, the sample S may be used in lieu of P. In addition to being much smaller than P, the distance queries on S only require finding the second nearest neighbor instead of the kth nearest neighbor. This is a significant improvement, especially because theoretical guarantees on kth nearest neighbor methods often require k to grow as a function of the input size n. 
    more » « less
  3. We consider the (1+ϵ)-approximate nearest neighbor search problem: given a set X of n points in a d-dimensional space, build a data structure that, given any query point y, finds a point x∈X whose distance to y is at most (1+ϵ)minx∈X ‖x−y‖ for an accuracy parameter ϵ∈(0,1). Our main result is a data structure that occupies only O(ϵ^−2 n log(n)log(1/ϵ)) bits of space, assuming all point coordinates are integers in the range {−n^O(1)…n^O(1)}, i.e., the coordinates have O(logn) bits of precision. This improves over the best previously known space bound of O(ϵ^−2 n log(n)^2), obtained via the randomized dimensionality reduction method of Johnson and Lindenstrauss (1984). We also consider the more general problem of estimating all distances from a collection of query points to all data points X, and provide almost tight upper and lower bounds for the space complexity of this problem. 
    more » « less
  4. In an optimal design problem, we are given a set of linear experiments v1,…,vn∈Rd and k≥d, and our goal is to select a set or a multiset S⊆[n] of size k such that Φ((∑i∈Sviv⊤i)−1) is minimized. When Φ(M)=Determinant(M)1/d, the problem is known as the D-optimal design problem, and when Φ(M)=Trace(M), it is known as the A-optimal design problem. One of the most common heuristics used in practice to solve these problems is the local search heuristic, also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and its empirical performance (Cook and Nachtrheim, 1980; Miller and Nguyen, 1994; Atkinson et al., 2007). However, despite its wide usage no theoretical bound has been proven for this algorithm. In this paper, we bridge this gap and prove approximation guarantees for the local search algorithms for D-optimal design and A-optimal design problems. We show that the local search algorithms are asymptotically optimal when kd is large. In addition to this, we also prove similar approximation guarantees for the greedy algorithms for D-optimal design and A-optimal design problems when k/d is large. 
    more » « less
  5. In an optimal design problem, we are given a set of linear experiments v1,…,vn∈Rd and k≥d, and our goal is to select a set or a multiset S⊆[n] of size k such that Φ((∑i∈Sviv⊤i)−1) is minimized. When Φ(M)=Determinant(M)1/d, the problem is known as the D-optimal design problem, and when Φ(M)=Trace(M), it is known as the A-optimal design problem. One of the most common heuristics used in practice to solve these problems is the local search heuristic, also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and its empirical performance (Cook and Nachtrheim, 1980; Miller and Nguyen, 1994; Atkinson et al., 2007). However, despite its wide usage no theoretical bound has been proven for this algorithm. In this paper, we bridge this gap and prove approximation guarantees for the local search algorithms for D-optimal design and A-optimal design problems. We show that the local search algorithms are asymptotically optimal when kd is large. In addition to this, we also prove similar approximation guarantees for the greedy algorithms for D-optimal design and A-optimal design problems when kd is large. 
    more » « less