skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Time-dependent flows and their applications in parabolic-parabolic Patlak-Keller-Segel systems Part I: Alternating flows
We consider the three-dimensional parabolic-parabolic Patlak-Keller-Segel equations (PKS) subject to ambient flows. Without the ambient fluid flow, the equation is super-critical in three-dimension and has finite-time blow-up solutions with arbitrarily small $L^1$-mass. In this study, we show that a family of time-dependent alternating shear flows, inspired by the clever ideas of Tarek Elgindi [39], can suppress the chemotactic blow-up in these systems.  more » « less
Award ID(s):
2406293
PAR ID:
10596593
Author(s) / Creator(s):
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Functional Analysis
Volume:
288
Issue:
5
ISSN:
0022-1236
Page Range / eLocation ID:
110786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this study, we investigate the behavior of three-dimensional parabolic–parabolic Patlak–Keller–Segel systems in the presence of ambient shear flows. Our findings demonstrate that when the total mass of the cell density is below a specific threshold, the solution remains globally regular as long as the flow is sufficiently strong. The primary difficulty in our analysis stems from the fast creation of chemical gradients due to strong shear advection. 
    more » « less
  2. Abstract We prove monotonicity of a parabolic frequency on static and evolving manifolds without any curvature or other assumptions. These are parabolic analogs of Almgren’s frequency function. When the static manifold is Euclidean space and the drift operator is the Ornstein–Uhlenbeck operator, this can been seen to imply Poon’s frequency monotonicity for the ordinary heat equation. When the manifold is self-similarly evolving by the Ricci flow, we prove a parabolic frequency monotonicity for solutions of the heat equation. For the self-similarly evolving Gaussian soliton, this gives directly Poon’s monotonicity. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three-circle theorem about log convexity of holomorphic functions on C. From the monotonicity, we get parabolic unique continuation and backward uniqueness. 
    more » « less
  3. We study the time asymptotic decay of solutions for a general system of hyperbolic–parabolic balance laws in one space dimension. The system has a physical viscosity matrix and a lower-order term for relaxation, damping or chemical reaction. The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper, we obtain optimal [Formula: see text] decay rates for [Formula: see text]. Our result is general and applies to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and logistic growth, and gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively. 
    more » « less
  4. Let \(\Sigma\) be a closed subset of \(\mathbb{R}^{n+1}\) which is parabolic Ahlfors-David regular and assume that \(\Sigma\) satisfies a 2-sided corkscrew condition. Assume, in addition, that \(\Sigma\) is either time-forwards Ahlfors-David regular, time-backwards Ahlfors-David regular, or parabolic uniform rectifiable. We then first prove that \(\Sigma\) satisfies a weak synchronized two cube condition. Based on this we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that \(\Sigma\) contain suniform big pieces of Lip(1,1/2) graphs. When \(\Sigma\) is parabolic uniformly rectifiable the construction can be refined and in this case we prove that \(\Sigma\) contains uniform big pieces of regular parabolic Lip(1,1/2) graphs. Similar results hold if \(\Omega\subset\mathbb{R}^{n+1}\) is a connected component of \(\mathbb{R}^{n+1}\setminus\Sigma\) and in this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by proving that if \(\Omega\) is a one-sided parabolic chord arc domain, and if \(\Sigma\) is parabolic uniformly rectifiable, then \(\Omega\) is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces of Lipschitz graphs for sets satisfying a two disc condition. 
    more » « less
  5. Abstract We consider a parabolic–parabolic interface problem and construct a loosely coupled prediction-correction scheme based on the Robin–Robin splitting method analyzed in [J. Numer. Math., 31(1):59–77, 2023]. We show that the errors of the correction step converge at $$\mathcal O((\varDelta t)^{2})$$, under suitable convergence rate assumptions on the discrete time derivative of the prediction step, where $$\varDelta t$$ stands for the time-step length. Numerical results are shown to support our analysis and the assumptions. 
    more » « less