skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase
Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283–333 K. As a result, the reactivity order of the mechanisms was determined to be RAF > FHT > SET. At 298 K, the calculated total rate constants for FHT and RAF reactions were competitive, being 6.09 × 109 and 8.21 × 109 M−1 s−1, respectively, while that for SET was slightly lower at 2.35 × 109 M−1 s−1. The overall rate constant was estimated to be 1.67 × 1010 M−1 s−1. The most favourable RAF reaction occurred at the C38[double bond, length as m-dash]C39 double bond, while the predominant FHT reactions involved the H15 and H13 hydrogen atoms of the methyl C8 group. The lifetime of FPA in natural water with respect to HO˙ oxidation was predicted to range from 10.84 hours to 2.62 years, depending on environmental conditions. Furthermore, the toxicity assessments revealed that while FPA is neither bioaccumulative nor mutagenic, it poses developmental toxicity and is harmful to aquatic organisms, including fish, daphnia, and green algae.  more » « less
Award ID(s):
2045025
PAR ID:
10596749
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
Volume:
27
Issue:
1
ISSN:
2050-7887
Page Range / eLocation ID:
211 to 224
Subject(s) / Keyword(s):
fenpyrazamine oxidation fungicide
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The mechanism of isomerization of hydroxyacetone to 2‐hydroxypropanal is studied within the framework of reaction force analysis at the M06‐2X/6‐311++G(d,p) level of theory. Three unique pathways are considered: (a) a step‐wise mechanism that proceeds through the formation of the Z‐isomer of their shared enediol intermediate, (b) a step‐wise mechanism that forms the E‐isomer of the enediol, and (c) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol−1. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism. 
    more » « less
  2. Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•−) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•−), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•−. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•−). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C − O and C − Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment. 
    more » « less
  3. The conversion of biomass to 5-hydroxymethylfurfural (HMF) holds substantial promise as a renewable energy source. Notably, HMF can be transformed into 2,5-bis(hydroxymethyl)furan (BHMF), a crucial reactant in biofuel production, but requires harsh operating conditions, H2, and precious metal catalysts. A recently reported Cannizzaro reaction of HMF to BHMF, characterized by its efficiency, mild conditions, and eco-friendliness, instead employed ionic liquids (ILs) to achieve high yields. In this study, combined quantum mechanical and molecular mechanical (QM/MM) simulations in conjunction with Metropolis Monte Carlo statistical mechanics and free-energy perturbation theory utilized M06-2X/6-31+G(d), PDDG/PM3, and the OPLS-VSIL force field to uncover important solute–solvent interactions present in the HMF to BHMF reaction pathway. The Cannizzaro reaction was examined in water and in five ILs composed of the 1-butyl-3-methylimidazolium [BMIM] cation coupled to hexafluorophosphate, tetrafluoroborate, thiocyanate, chloride, and bromide. Energetic and structural analysis of the rate-determining hydride transfer between HMF and the hydride-donor anion HMFOH− attributed the enhanced reactivity to highly organized solvent interactions featuring (1) hydrogen bonding between the ring protons of [BMIM] and the negatively charged carbonyl oxygen atoms on the transition structure, (2) favorable electrostatic interactions between the IL anions and solute hydroxyl groups, and (3) beneficial π–π stacking interactions between [BMIM] and the two aromatic rings present in HMF and HMFOH−. 
    more » « less
  4. HOHg(II)O•, formed from HOHg(I)• + O3, is a key intermediate in OH-initiated oxidation of Hg(0) in the atmosphere. As no experimental data is available for HOHg(II)O•, we use computational chemistry (CCSD(T)//M06-2X/AVTZ) to characterize its reactions with atmospheric trace gases (NO, NO2, CH4, C2H4, CH2O and CO). In summary, HOHg(II)O•, like the analogous BrHg(II)O• radical, largely mimics the reactivity of •OH in reactions with NOx, alkanes, alkenes, and aldehydes. The rate constant for its reaction with methane (HOHg(II)O• + CH4 → Hg(II)(OH)2 + •CH3) is about four times higher than that of •OH at 298 K. All these reactions maintain mercury as Hg(II), except for HOHg(II)O• + CO → HOHg(I)• + CO2. Considering only the six reactions studied here, we find that reduction by CO dominates the fate of HOHg(II)O• (79-93%) in many air masses (in the stratosphere and at ground level in rural, marine, and polluted urban regions) with only modest competition from HOHg(II)O• + CH4 (<15%). We expect that this work will help global modeling of atmospheric mercury chemistry. 
    more » « less
  5. Understanding the kinetics of reactions in biosynthetic pathways requires accounting for the contribution of quantum mechanical tunneling to the rates. Whereas hydrogen tunneling in biology is well established, the extent of heavy-atom tunneling in biochemical reactions has been very little studied. We report computational results (M06-2X/cc-pVDZ) on rate constants for electrocyclic ring closures and [3,3] sigmatropic shifts––processes dominated by heavy-atom motions––that are proposed steps in the biosynthesis of four representative natural products. Using direct dynamics, and canonical variational transition state theory with and without the small curvature tunneling approximation, predicted rate constants suggest that heavy-atom tunneling contributes 21% to the electrocyclization step leading to (+)-occidentalol (3), and 28% to the Cope rearrangement leading to a close analogue of dictyoxepin (4), at 298 K. Key structural factors that lead to faster rates at a given temperature and higher tunneling percentages include tethers between the carbons forming a new sigma bond and the release of ring strain from opening of a small ring. Computed 12C/13C kinetic isotope effects for cyclization to 3 provide a possible experimental test of the predictions. 
    more » « less