skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 15, 2025

Title: Generalized Prompt Tuning: Adapting Frozen Univariate Time Series Foundation Models for Multivariate Healthcare Time Series
Award ID(s):
2047981
PAR ID:
10596855
Author(s) / Creator(s):
; ;
Publisher / Repository:
Machine Learning for Health
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most current algorithms for multivariate time series classification tend to overlook the correlations between time series of different variables. In this research, we propose a framework that leverages Eigen-entropy along with a cumulative moving window to derive time series signatures to support the classification task. These signatures are enumerations of correlations among different time series considering the temporal nature of the dataset. To manage dataset’s dynamic nature, we employ preprocessing with dense multi scale entropy. Consequently, the proposed framework, Eigen-entropy-based Time Series Signatures, captures correlations among multivariate time series without losing its temporal and dynamic aspects. The efficacy of our algorithm is assessed using six binary datasets sourced from the University of East Anglia, in addition to a publicly available gait dataset and an institutional sepsis dataset from the Mayo Clinic. We use recall as the evaluation metric to compare our approach against baseline algorithms, including dependent dynamic time warping with 1 nearest neighbor and multivariate multi-scale permutation entropy. Our method demonstrates superior performance in terms of recall for seven out of the eight datasets. 
    more » « less
  2. Robert Taylor (Ed.)
  3. Count time series are widely encountered in practice. As with continuous valued data, many count series have seasonal properties. This article uses a recent advance in stationary count time series to develop a general seasonal count time series modeling paradigm. The model constructed here permits any marginal distribution for the series and the most flexible autocorrelations possible, including those with negative dependence. Likelihood methods of inference are explored. The article first develops the modeling methods, which entail a discrete transformation of a Gaussian process having seasonal dynamics. Properties of this model class are then established and particle filtering likelihood methods of parameter estimation are developed. A simulation study demonstrating the efficacy of the methods is presented and an application to the number of rainy days in successive weeks in Seattle, Washington is given. 
    more » « less
  4. We propose a broad class of models for time series of curves (functions) that can be used to quantify near long‐range dependence or near unit root behavior. We establish fundamental properties of these models and rates of consistency for the sample mean function and the sample covariance operator. The latter plays a role analogous to sample cross‐covariances for multivariate time series, but is far more important in the functional setting because its eigenfunctions are used in principal component analysis, which is a major tool in functional data analysis. It is used for dimension reduction of feature extraction. We also establish a central limit theorem for functions following our model. Both the consistency rates and the normalizations in the Central Limit Theorem (CLT) are nonstandard. They reflect the local unit root behavior and the long memory structure at moderate lags. 
    more » « less